
5/18/2004 CSE 378 Cache Performance 1

Performance metrics for caches

• Basic performance metric: hit ratio h
h = Number of memory references that hit in the cache /

total number of memory references
Typically h = 0.90 to 0.97

• Equivalent metric: miss rate m = 1 -h
• Other important metric: Average memory access time

Av.Mem. Access time = h * Tcache + (1-h) * Tmem

where Tcache is the time to access the cache (e.g., 1 cycle) and
Tmem is the time to access main memory (e.g., 50 cycles)

(Of course this formula has to be modified the obvious way if you
have a hierarchy of caches)

5/18/2004 CSE 378 Cache Performance 2

Parameters for cache design

• Goal: Have h as high as possible without paying too much for Tcache

• The bigger the cache size (or capacity), the higher h.
– True but too big a cache increases Tcache

– Limit on the amount of “ real estate” on the chip (although this limit is not
present for 1st level caches)

• The larger the cache associativity, the higher h.
– True but too much associativity is costly because of the number of

comparators required and might also slow down Tcache (extra logic needed
to select the “ winner”)

• Block (or line) size
– For a given application, there is an optimal block size but that optimal

block size varies from application to application

5/18/2004 CSE 378 Cache Performance 3

Parameters for cache design (ct’d)

• Write policy (see later)
– There are several policies with, as expected, the most complex

giving the best performance results

• Replacement algorithm (for set-associative caches)
– Not very important for caches with small associativity (will be

very important for paging systems)

• Split I and D-caches vs. unified caches.
– First-level caches need to be split because of pipelining that

requests an instruction every cycle. Allows for different design
parameters for I-caches and D-caches

– Second and higher level caches are unified (mostly used for data)

5/18/2004 CSE 378 Cache Performance 4

Example of cache hierarchies (don’ t quote me on

these numbers)

MICRO L1 L2

Alpha 21064 8K(I), 8K(D), WT,
1-way, 32B

128K to 8MB,WB,
1-way,32B

Alpha 21164 8K(I), 8K(D), WT,
1-way, 32B ,D l-u fr.

96K, WB, on-chip,
3-way,32B,l-u free

Alpha 21264 64K(I), 64K(D),?,
2-way, ?

up to 16MB

Pentium 8K(I),8K(D),both,
2-way, 32 B

Depends

Pentium II,
III,IV

16K(I),16K(D), WB,
4-way(I),2-way(D),
32B,l-u free

256K-1MBK,32B,way,
on-chip or tightly-
coupled

5/18/2004 CSE 378 Cache Performance 5

Examples (cont’d)

PowerPC 620 32K(I),32K(D),WB
8-way, 64B

1MB TO 128MB,
WB, 1-way

MIPS R10000 32K(I),32K(D),l-u,
2-way, 32B

512K to 16MB,
2-way, 32B

SUN UltraSparcIII 32K(I),64K(D),l-u, 4-8MB 1-way
 4-way

AMD K7 64k(I), 64K(D)

5/18/2004 CSE 378 Cache Performance 6

Back to associativity

• Advantages
– Reduces conflict misses

• Disadvantages
– Needs more comparators

– Access time is longer (need to choose among the comparisons, i.e.,
need of a multiplexor)

– Replacement algorithm is needed and could get more complex as
associativity grows

5/18/2004 CSE 378 Cache Performance 7

Replacement algorithm

• None for direct-mapped

• Random or LRU or pseudo-LRU for set-associative caches
– LRU means that the entry in the set which has not been used for

the longest time will be replaced (think about a stack)

5/18/2004 CSE 378 Cache Performance 8

Impact of associativity on performance

Direct-mapped

2-way
4-way

8-way

Typical curve.

Biggest improvement from direct-
mapped to 2-way; then 2 to 4-way
then incremental

Miss ratio

5/18/2004 CSE 378 Cache Performance 9

Impact of block size

• Recall block size = number of bytes stored in a cache entry
• On a cache miss the whole block is brought into the cache
• For a given cache capacity, advantages of large block size:

– decrease number of blocks: requires less real estate for tags
– decrease miss rate IF the programs exhibit good spatial locality
– increase transfer efficiency between cache and main memory

• For a given cache capacity, drawbacks of large block size:
– increase latency of transfers
– might bring unused data IF the programs exhibit poor spatial

locality
– Might increase the number of conflict/capacity misses

5/18/2004 CSE 378 Cache Performance 10

Classifying the cache misses:The 3 C’s

• Compulsory misses (cold start)
– The first time you touch a block. Reduced (for a given cache

capacity and associativity) by having large block sizes

• Capacity misses
– The working set is too big for the ideal cache of same capacity and

block size (i.e., fully associative with optimal replacement
algorithm). Only remedy: bigger cache!

• Conflict misses (interference)
– Mapping of two blocks to the same location. Increasing

associativity decreases this type of misses.

• There is a fourth C: coherence misses (cf. multiprocessors)

5/18/2004 CSE 378 Cache Performance 11

Impact of block size on performance

Miss ratio

8 bytes

16 bytes
32 bytes

64 bytes

128 bytes

Typical form of the curve.
The knee might appear for
different block sizes
depending on the application
and the cache capacity

5/18/2004 CSE 378 Cache Performance 12

Performance revisited

• Recall Av.Mem. Access time = h * Tcache + (1-h) * Tmem

• We can expand on Tmem as Tmem = Tacc + b * Ttra

– where Tacc is the time to send the address of the block to main
memory and have the DRAM read the block in its own buffer, and

– Ttra is the time to transfer one word (4 bytes) on the memory bus
from the DRAM to the cache, and b is the block size (in words)
(might also depend on width of the bus)

• For example, if Tacc = 5 and Ttra = 1, what cache is best
between
– C1 (b1 =1) and C2 (b2 = 4) for a program with h1 = 0.85 and

h2=0.92 assuming Tcache = 1 in both cases.

5/18/2004 CSE 378 Cache Performance 13

Writing in a cache

• On a write hit, should we write:
– In the cache only (write-back) policy

– In the cache and main memory (or next level cache) (write-
through) policy

• On a write miss, should we
– Allocate a block as in a read (write-allocate)

– Write only in memory (write-around)

5/18/2004 CSE 378 Cache Performance 14

Write-through policy

• Write-through (akastore-through)
– On a write hit, write both in cache and in memory

– On a write miss, the most frequent option is write-around, i.e.,
write only in memory

• Pro:
– memory is always coherent (better for I/O);

– more reliable (no error detection-correction “ECC” required for
cache)

• Con:
– more memory traffic (can be somewhat alleviated with write

buffers)

5/18/2004 CSE 378 Cache Performance 15

Write-back policy

• Write-back (akacopy-back)
– On a write hit, write only in cache (requires dirty bit)

– On a write miss, most often write-allocate (fetch on miss) but
variations are possible

– We write to memory when a dirty block is replaced

• Pro-con reverse of write through

5/18/2004 CSE 378 Cache Performance 16

Cutting back on write backs

• In write-through, you write only the word (byte) you
modify

• In write-back, you write the entire block
– But you could have one dirty bit/word so on replacement you’d

need to write only the words that are dirty

5/18/2004 CSE 378 Cache Performance 17

Hiding memory latency

• On write-through, the processor has to wait till the memory has stored
the data

• Inefficient since the store does not prevent the processor to continue
working

• To speed-up the process, have write buffers between cache and main
memory
– write buffer is a (set of) temporary register that contains the contents and

the address of what to store in main memory

– The store to main memory from the write buffer can be done while the
processor continues processing

• Same concept can be applied to dirty blocks in write-back policy

5/18/2004 CSE 378 Cache Performance 18

Coherency: caches and I/O

• In general I/O transfers occur directly to/from memory
from/to disk

• What happens for memory to disk
– With write-through memory is up-to-date. No problem

– With write-back, need to “purge” cache entries that are dirty and
that will be sent to the disk

• What happens from disk to memory
– The entries in the cache that correspond to memory locations that

are read from disk must be invalidated

– Need of a valid bit in the cache (or other techniques)

5/18/2004 CSE 378 Cache Performance 19

Reducing Cache Misses with more
“Associativity” -- Victim caches

• Example of an “hardware assist”

• Victim cache: Small fully-associative buffer “behind” the
cache and “before” main memory

• Of course can also exist if cache hierarchy
– E.g., behind L1 and before L2, or behind L2 and before main

memory)

• Main goal: remove some of the conflict misses in direct-
mapped caches (or any cache with low associativity)

5/18/2004 CSE 378 Cache Performance 20

Index + Tag

Cache

Victim Cache
1. Hit

2.Miss in L1; Hit in VC; Send
data to register and swap

3. From next level of
memory hierarchy

3’ . evicted

5/18/2004 CSE 378 Cache Performance 21

Operation of a Victim Cache

• 1. Hit in L1; Nothing else needed

• 2. Miss in L1 for block at location b, hit in victim cacheat
location v: swap contents of b and v (takes an extra cycle)

• 3. Miss in L1, miss in victim cache : load missing item
from next level and put in L1; put entry replaced in L1 in
victim cache; if victim cache is full, evict one of its entries.

• Victim buffer of 4 to 8 entries for a 32KB direct-mapped
cache works well.

