
Caches – basic idea

Small, fast memory
Stores frequently-accessed blocks of memory.
When it fills up, discard some blocks and
replace them with others.
Works well if we reuse data blocks

Examples:
Incrementing a variable
Loops
Function calls

Why do caches work

Locality principles
Temporal locality

Location of memory reference is likely to be the
same as another recent reference.
Variables are reused in program
Loops, function calls, etc.

Spacial locality
Location of memory is likely to be near another
recent reference
Matrices, arrays
Stack accesses

Cache performance example
Problem (let’s assume single cycle CPU)

500 MHz CPU cycle time = 2 ns
Instructions: arithmetic 50%, load/store 30%, branch
20%.
Cache: hit rate: 95%, miss penalty: 60 ns (or 30
cycles), hit time: 2 ns (or 1 cycle)

MIPS CPI w/o cache for load/store:
0.5 * 1 + 0.2 * 1 + 0.3 * 30 = 9.7

MIPS CPI with cache for load/store:
0.5 * 1 + 0.2 * 1 + 0.3 * (.95*1 + 0.05*30) = 1.435

Caching Vocabulary
Miss Penalty- time to fetch a block from a lower level
cache or main memory

Block (Line) size – Amount of data in each cache
address (32-256 bytes)

Bank Size - # of sets in the cache

Cache Size –
Total Data contained = (bank size) x (associativity) x (block size)
Usually 4-64Kb for L1, 128-512 Kb L2

Cache types
Direct-mapped

Memory location maps to single specific cache line (block)
What if two locations map to same line (block)?

Conflict, forces a miss
Set-associative

Memory location maps to a set containing several blocks.
Each block still has tag and data, and sets can have 2,4,8,etc.
blocks. Blocks/set = associativity
Why? Resolves conflicts in direct-mapped caches.

If two locations map to same set, one could be stored in first block
of the set, and another in second block of the set.

Fully-associative
Cache only has one set. All memory locations map to this set.
This one set has all the blocks, and a given location could be in
any of these blocks
No conflict misses, but costly. Only used in very small caches.

More on Types

Direct-mapped cache example
4 KB cache, each block is 32 bytes
How many blocks?

How long is the index to select a block?

How long is the offset (displacement) to select a
byte in block?

How many bits left over if we assume 32-bit
address? These bits are tag bits

Direct-mapped cache example
4 KB cache, each block is 32 bytes

4 KB = 212, 32 = 25

How many blocks?
212 bytes / 25 bytes in block = 27 = 128 blocks

How long is the index to select a block?
log2128 = 7 bits

How long is the offset (displacement) to select a
byte in block?

5 bits
How many bits left over if we assume 32-bit
address? These bits are tag bits

32 – 7 – 5 = 20 bits

Direct Mapped 4-word Block
Address and cache:

4-way Associative 1-word block

Cache Misses: The Three Cs

Compulsory:
Very first access of a block (Cold-Start Misses)

Capacity:
Cache is too small to hold all blocks in the
working set. Some are discarded to be
retrieved later

Conflict: (only in Direct or Set Assoc.)

More than n blocks map to a set in an n-way
set associative cache.

Cache size

4 KB visible size
Let’s look at total space and overhead:

Each block contains:
1 valid bit
20-bit tag
32 bytes of data = 256 bits
Total block (line) size: 1+20+256 = 277 bits

Total cache size in hardware, including
overhead storage:

277 bits * 128 blocks = 35456 bits = 4432 bytes = 4.32 Kb
Overhead: 0.32 Kb (336 bytes) for valid bits and tags

Cache access examples…
Consider a direct-mapped cache with 8 blocks and 2-byte
block. Total size = 8 * 2 = 16 bytes
Address: 1 bit for offset/displacement, 3 bits for index,
rest for tag
Consider a stream of reads to these bytes:

These are byte addresses:
A@3, B@13,C@1,D@0,E@5, F@1, G@4, H@32, I@33, J@1
Corresponding block addresses ((byteaddr/2)%8):
1, 6, 0, 0, 2, 0, 2, 0 (16%8), 0, 0.
Tags: 2 for 32, 33, 0 for all others ((byteaddr/2)/8).

Let’s look at what this looks like. How many misses?
What if we increase associativity to 2? Will have 4 sets, 2
blocks in each set, still 2 bytes in each block. Total size
still 16 bytes. How does behavior change?...

(get notes from someone for the drawings)

