Smashing the Stack
for Fun and Profit

General Overview

» “Smashing the Stack” is a type of buffer
overflow attack - overwriting the return
address to redirect control to attack code

» Most common buffer overflow error since it is
the easiest to make and take advantage of

Buffer Overflows

» No one would do something like this, right?

Slammer Worm Info

» First example of a high speed worm
(previously only existed in theory)

» Infected a total of 75,000 hosts in about 30
minutes

» Infected 90% of vulnerable hosts in 10 min

» Exploited a vulnerability in MS SQL Server
Resolution Service, for which a patch had
been available for 6 months

Slammer Worm Info

» Code randomly generated an IP address and
sent out a copy of itself

» Used UDP - limited by bandwidth, not
network latency (TCP handshake).

» Packet was just 376 bytes long...
» Spread doubled every 8.5 seconds

» Max scanning rate (55 million scans/second)
reached in 3 minutes

Slammer Worm - Eye Candy

Slammer Worm - Eye Candy

Anatomy of Memory

Assumptions

*Stack grows down

Stack pointer points to the last
address on the stack

Heap

5
5
3
S
<
2
S
=
Q
=
5
=
o
—

Data (.data)

Executable Code (.text)

Example Program

Let us consider how the stack of this program would look:

vold function(int a, 1nt b, 1int c) {
char buf[l06];
}

int main () {
function (I Zacne
}

Stack Frame

function prolog

sw Sra, -4 (sp)
sw $s0, -8 (sp)

addi SSsp, Ssp, -24

Allocates space for stack frame

SISSAIPPY AIOWA JOYSIH

Top of memory
Bottom of stack

yoes Jo doj.
Alowaw JO wonog

N/
@)
(O
A
Ve
—
@b,
&
(O
o
L
U
O
=
=
>
i
(T
b,
=
-

Example Program 2

vold function (char *str) {
char buf [1l6];
strcpy (buf, str);

int main () {

char large string[32];

1 I

for (1 = 0; i < 31; 1i++) {
large string[i] = ‘A’;

J

function(large string);

Example Program 2

When this program 1is run, it results in an exception

buf

JoelS Jo wonoyg
Kxowow Jo doj,

-
S
o I
g v
oNe
==
o
S
@)
M

The return address 1s overwritten with ‘AAAA’ (0x41414141)

Function exits and goes to execute instruction at 0x41414141.....

Example Program 3

Can we take advantage of this to execute code, instead of crashing?

vold function (int a, int b, int c¢) {
char buf[4];
1 N
r = buf + 20;
(*r) e

int main () {
int X
function (1,2, 3) ;

(“%d\l’l", X);

Example Program 3

buf + 20

buf 0] ra

jorIS JO Wonoyg
Kiowdw Jo doj,

-
S
o
E*a;
o B
g o
@)
S F
@)
M

This causes it to skip the assignment of 1 to x, and
prints out O for the value of x

So What?

» We have seen how we can overwrite the
return address of our own program to crash
it or skip a few instructions - basically just
writing a buggy program

» How can these principles be used by an
attacker to hijack the execution of a
program?

» Attacker can use some kind of user/network

input to inject attack code into such a
buffer

\\
5 \ \
i N\ "
e\

Y . % \‘. LY

16

