Lecture 11 (Fri 10/17/2008)

A relevant question

= Lab #1 Hardware - Due Fri Oct 17 - Today! at 5pm
= HW #2 - MIPS programming, due Wed Oct 22
= Midterm - Fri Oct 24

= Today’s objectives:
— Intro to Pipelining

= Assuming you’ve got: f—
— One washer (takes 30 minutes)
/7

— One drier (takes 40 minutes) E

— One “folder” (takes 20 minutes) él-F

= |t takes 90 minutes to wash, dry, and fold 1 load of laundry.
— How long does 4 loads take?

The slow way

Laundry Pipelining

6 PM 7 8 9 10 11 Midnight

[Time

30 40 20 30 40 20 30 40 20 30 40 20

= |If each load is done sequentially it takes 6 hours

= Start each load as soon as possible
— Overlap loads

6 PM 7 8 9 10 11 Midnight

= Pipelined laundry takes 3.5 hours

Pipelining Lessons

= Pipelining doesn’t help latency of
single load, it helps throughput of
entire workload

= Pipeline rate limited by slowest
pipeline stage

= Multiple tasks operating
simultaneously using different
resources

= Potential speedup = Number pipe
stages

= Unbalanced lengths of pipe stages
reduces speedup

= Time to “fill” pipeline and time to
“drain” it reduces speedup

Pipelining

Pipelining is a general-purpose efficiency technique
— It is not specific to processors

Pipelining is used in:
— Assembly lines
— Bucket brigades
— Fast food restaurants

Pipelining is used in other CS disciplines:
— Networking
— Server software architecture

Useful to increase throughput in the presence of long latency
— More on that later...

Pipelining Processors

= We’ve seen two possible implementations of the MIPS architecture.

— A ssingle-cycle datapath executes each instruction in just one clock
cycle, but the cycle time may be very long.

— A multicycle datapath has much shorter cycle times, but each
instruction requires many cycles to execute.

= Pipelining gives the best of both worlds and is used in just about every
modern processor.

— Cycle times are short so clock rates are high.
— But we can still execute an instruction in about one clock cycle!

Single Cycle Datapath CPI =1 Long Cycle Time
Multi-cycle Datapath CPl=-4 Short Cycle Time
Pipelined Datapath CPl = -1 Short Cycle Time

Instruction execution review

Executing a MIPS instruction can take up to five steps.

Step Name Description
Instruction Fetch | IF Read an instruction from memory.
Instruction Decode | ID Read source registers and generate control signals.
Execute EX Compute an R-type result or a branch outcome.
Memory MEM | Read or write the data memory.
Writeback WB Store a result in the destination register.

However, as we saw, not all instructions need all five steps.

Instruction Steps required

beq IF ID EX

R-type IF ID EX WB
sw IF D EX MEM

lw IF D EX MEM WB

Single-cycle datapath diagram

Single-cycle review

= All five execution steps occur in one clock cycle.

= This means the cycle time must be long enough to accommodate all the
steps of the most complex instruction—a “lw” in our instruction set.

— If the register file has a 1ns latency and the memories and ALU have a

2ns latency, “lw” will require 8ns.

— Thus all instructions will take 8ns to execute.

= Each hardware element can only be used once per clock cycle.
— A “lw” or “sw” must access memory twice (in the IF and MEM stages),
so there are separate instruction and data memories.
— There are multiple adders, since each instruction increments the PC
(IF) and performs another computation (EX). On top of that, branches

also need to compute a target address.

1ns
RegWrite 2ns
| MemWrite MemToReg
Read Instruction | _1[25-21] 2ns
address (31-0] Read Read
register 1 data 1 Read Read A
1[20 - 16] ddi dat:
Instruction Read address jata M
memory [register 2 Read " Write u
M Wiite data2 address x
u [register wie _Dat 0
2ns 15-12 X | —] wiite Registers L data Memory
b 1 data T
MemRead
RegDst ALUSIc
115 - 0] Sign
extend,
= How long does it take to execute each instruction?
9
Example: Instruction Fetch (IF)
= Let’s quickly review how lw is executed in the single-cycle datapath.
= We’ll ignore PC incrementing and branching for now.
= In the Instruction Fetch (IF) step, we read the instruction memory.
RegWrite
| MemWrite MemToReg
S:;Ll »mugﬁ 1[25-21) Read Read
register 1 data 1 Read Read
1[20 - 16] Read address data
Instruction Read
memory 0 register 2 data 2 Write
M Write e address
u register wite Dat
tas-1 X | —| wie Redisters data Memory
* " data
MemRead
RegDst ALUSrc
1[15-0] Sign

extend|

10
Instruction Decode (ID)
= The Instruction Decode (ID) step reads the source registers from the
register file.
RegWrite
Read Instruction . 1[25-21] [Read p— MemWrite MemToReg
address [31-0] register 1 iy — —
1[20 - 16] Read address data
Instruction register 2 Read
memory 0 data2 Write
M Write address
u register Wite _Dat
1185-11] | —! wiite Registers data Memory
* " data
MemRead
RegDst /, \ ALUSrc
1[15-0] [sign |
* extend|
\\,/"

Execute (EX) Memory (MEM)
= The third step, Execute (EX), computes the effective memory address = The Memory (MEM) step involves reading the data memory, from the
from the source register and the instruction’s constant field. address computed by the ALU.
RegWrite RegWrite
‘ MemWrite MemToReg ‘ MemWrite MemToReg
Rea roncton | J1B5-20 | [Reag Read N Rea ronton | 105-20 | [Reag Read
register 1 data 1 LALU ~ Read Read sl 1 register 1 data 1 Read Read sl 1
Instruction 120 16) Read p Zero address data M nstruction 1120_16] Read address data M
memory Tegister 2 Read o Result Write u memory Tegister 2 Read Write u
data2 M dd x data2 i M
wiite u (address 0 Write address o
Write 9 N ALUOp data y Wiite g data y
data \T/ T data I
RegDst ALUSIC MemRead RegDst ALUSIC MemRead
1[15-0] sign _| 1[15-0] sign _,
extend| extend|
13 14
Writeback (WB) A bunch of lazy functional units
= Finally, in the Writeback (WB) step, the memory value is stored into the = Notice that each execution step uses a different functional unit.
destination register. = In other words, the main units are idle for most of the 8ns cycle!
— The instruction RAM is used for just 2ns at the start of the cycle.
— Registers are read once in ID (1ns), and written once in WB (1ns).
- — The ALU is used for 2ns near the middle of the cycle.
rend areion] 125211 \ MemWrite MemToReg — Reading the data memory only takes 2ns as well.
Read Read cees . .
addriess [31:0) register 1 data 1 rod e ,E\ = That’s a lot of hardware sitting around doing nothing.
20-16] Read address data "
nstruction T) register 2 Read u
memory 0 data 2 Write M
M Write address
u register wiite Dat \2)
105-11 % | —| wiite Registers data ™eMory
-'—'\% data
MemRead
RegDst ALUSrc emRea
1[15-0] Sign
extend|
15 16

Putting those slackers to work

= We shouldn’t have to wait for the entire instruction to complete before
we can re-use the functional units.

= For example, the instruction memory is free in the Instruction Decode
step as shown below, so...

Idle Instruction Decode (ID)
RegWrite
‘ MemToRe
Read Instruction 1[25-21] read p— MemWrite g
address [31-0] e e — — L
120 - 16]
Instruction Read address data M
memory o register 2 Read Write u
data 2 X
M Wiite address
u register wite Dat 0
Registers memory
115-11) X | —n| Write data.
b L data T
MemRead
RegDst /* \ ALUSrc
1[15-0] [sign \
*extend|
\]
/
17

Decoding and fetching together

= Why don’t we go ahead and fetch the next instruction while we’re
decoding the first one?

Fetch 2nd Decode 1st instruction

RegWrite
I MemToRe
Read Instruction | _ 1[25-21] v p— Mem‘wme g
i § ea
address [31-0) e e — — :
L2og1el address data
Instruction Read M
memory 0 register 2 Read Write u
data 2 M
M Write address
u register wite D 0
Lips-1m) X |) wie Registers data ™Memory
P L data T
MemRead
RegDst /, \ ALUSTC
1[15-0] [sign \
*extend|
\)
N
18

Executing, decoding and fetching

= Similarly, once the first instruction enters its Execute stage, we can go
ahead and decode the second instruction.

= But now the instruction memory is free again, so we can fetch the third

instruction!
Fetch 3rd Decode 2nd Execute 1st
—A— A
RegWrite
‘ MemToR
Read Instruction | _ 1[25-21] end - ‘\\ Memwrite emToReg
: e
address [31-0] register 1 data 1 o~
120~ 18] LALU ~N Read Read | —p(1
Read Zero address data v
Instruction . Read A
memory 0 register 2 (h(“; 2 Result Write u
M Write o M address x
u register S 1/ wi Data 0
x tite
115-13) * Wit [eoIsters B ALUOp data MeMOTY
1 1 data \T
MemRead
RegDst /—\ ALUSrc
1[15-0] [sign |
*extend|
e
o/

Making Pipelining Work

= We’ll make our pipeline 5 stages long, to handle load instructions as they
were handled in the multi-cycle implementation
— Stages are: IF, ID, EX, MEM, and WB
= We want to support executing 5 instructions simultaneously: one in each
stage.

20

Break datapath into 5 stages

Pipelining Loads

= Each stage has its own functional units.
= Each stage can execute in 2ns
— Just like the multi-cycle implementation

Clock cycle
1 2 3 4 5 6 7 8 9
w $t0,4(5sp) [IF | ID EX | MEM [WB
w St 8(Ssp) LF) EX | MEM | WB
w $t2, 12($sp) IF ID | EX |MEM| WB
w $t3, 16($sp) IF D | EX [MEM | WB |
w $t4, 20(Ssp) IF | D | EX | MEM | WB]
6PM 7 8 9
Time |

22

Pipeline terminology

IF D EXE MEM WB
—_—— A = A \,_A_\
RegWrite
Read Instruction | _ 1[25-21] v ‘ p— ‘\\ Memwrite MemToReg
address [31-0] 016 register 1 data1 LALU\\ Read Read f
struction 20161 Read Nz address data M
memory o register 2. Fead O Result Write u
v Write At M ~ address x
u register M A wiite Da@ o
105-11) X |) i COSters i " aLuop data MEMOTY
T data N ‘
Reqst /7 N ALUSTC MemRead
0 -
W
2ns 2ns 2ns 2ns
21
A pipeline diagram
Clock cycle
1 2 3 4 5 6 7 8 9
W $t0,4(5sp) [IF [ID EX | MEM | WB
sub $v0, $a0, $at L F ID EX | MEM | WB
and $t1, $t2, $t3 IF ID | EX |MEM| WB
or $s0, $s1, $s2 IF ID | EX | MEM | WB |
add $sp, $Ssp, -4 IF | ID | EX | MEM | WB |

= A pipeline diagram shows the execution of a series of instructions.
— The instruction sequence is shown vertically, from top to bottom.
— Clock cycles are shown horizontally, from left to right.

— Each instruction is divided into its component stages. (We show five
stages for every instruction, which will make the control unit easier.)

= This clearly indicates the overlapping of instructions. For example, there
are three instructions active in the third cycle above.

— The “lw” instruction is in its Execute stage.
— Simultaneously, the “sub” is in its Instruction Decode stage.
— Also, the “and” instruction is just being fetched.

23

Clock cycle
1 2 3 4 5 6 7 8 9

W $t0,4(5sp) [IF [ID EX | MEM | WB
sub $v0, $a0, $at L F ID EX | MEM | WB
and $t1, $t2, $t3 IF ID | EX |MEM| WB
or $s0, $s1, $s2 IF ID | EX [MEM | WB |
add $sp, Ssp, -4 IF | ID | EX | MEM | WB |

~ J_Y_N ~

filling full emptying

= The pipeline depth is the number of stages—in this case, five.

= In the first four cycles here, the pipeline is filling, since there are unused
functional units.

= In cycle 5, the pipeline is full. Five instructions are being executed
simultaneously, so all hardware units are in use.

= In cycles 6-9, the pipeline is emptying.

24

Pipelining Performance

Clock cycle
1 2 3 4 5 6 7 8 9
w $t0,4(5sp) [IF | ID EX | MEM [WB
w St1, 8(Ssp) LF D EX | MEM | WB
w $t2, 12($sp) IF ID | EX |MEM| WB
w $t3, 16($sp) IF D | EX [MEM | WB |
w $t4, 20($sp) IF | ID | EX [MEM | WB]

filling
= Execution time on ideal pipeline:
— time to fill the pipeline + one cycle per instruction
— Ninstructions -> 4 cycles + N cycles or (2N + 8) ns for 2ns clock period

= Compare with other implementations:
— Single Cycle: N cycles or 8N ns for 8ns clock period

— Multicycle: CPI * N cycles or -8N ns for 2ns clock period and CPI = ~4

= How much faster is pipelining for N=1000 ?

Pipeline Datapath: Resource Requirements

Clock cycle
1 2 3 4 5 6 7 8 9
w $t0,4¢5sp) [_IF_]| ID EX | MEM | WB
w St 8(Ssp) LF ID EX | MEM | WB
w $t2, 12($sp) IF ID | EX |MEM| WB
w $t3, 16($sp) IF [ID [EX | MEM | WB |
w $t4, 20(Ssp) IF | D | EX | MEM | WB]

= We need to perform several operations in the same cycle.
— Increment the PC and add registers at the same time.
— Fetch one instruction while another one reads or writes data.

= Thus, like the single-cycle datapath, a pipelined processor duplicates
hardware elements that are needed several times in the same clock
cycle.

26

25
Pipelining other instruction types
= R-type instructions only require 4 stages: IF, ID, EX, and WB
— We don’t need the MEM stage
= What happens if we try to pipeline loads with R-type instructions?
Clock cycle
1 2 3 4 5 6 7 8 9
add $sp,Ssp,-4 [IF | ID EX [WB
sub $v0, $a0, Sat L IF 1D EX | WB
w $t0, 4(Ssp) IF ID EX | MEM | WB
or $s0, $s1, $s2 IF ID EX WB
w St1, 8(Ssp) IF | D | EX | MEM [WB |
27

Important Observation

= Each functional unit can only be used once per instruction

= Each functional unit must be used at the same stage for all instructions.
See the problem if:

— Load uses Register File’s Write Port during its 5th stage
— R-type uses Register File’s Write Port during its 4th stage

Clock cycle
1 2 3 4 5 6 7 8 9
add $sp,Ssp,-4 [IF | ID EX | WB
sub $v0, $a0, Sat L F) EX [wB
W $t0, 4(Ssp) IF ID | EX |MEM] WB
or $s0, $s1, $s2 IF ID EX WB
w $t1, 8(Ssp) IF [ID | EX [MEM | WB |

28

A solution: Insert NOP stages

= Enforce uniformity
— Make all instructions take 5 cycles.
— Make them have the same stages, in the same order
« Some stages will do nothing for some instructions

R-type [IF] 1D [EX [NOP [WB |
Clock cycle
1 2 3 4 5 6 7 8 9

add $sp,Ssp,-4 [IF | ID EX | NOP [WB
sub $v0, $a0, Sat L 1D EX | NOP | WB
w $t0, 4(Ssp) IF ID | EX |MEM| WB
or $s0, $s1, $s2 IF ID | EX [NOP | WB |
w St1, 8(Ssp) IF | D | EX | MEM | WB]

« Stores and Branches have NOP stages, too...
store [IF T ID [EX | MEM [NOP]
branch [IF T Ib [EX [NOP [NOP |

29

Summary

Pipelining attempts to maximize instruction throughput by overlapping
the execution of multiple instructions.

Pipelining offers amazing speedup.
— In the best case, one instruction finishes on every cycle, and the
speedup is equal to the pipeline depth.

The pipeline datapath is much like the single-cycle one, but with added
pipeline registers

— Each stage needs is own functional units

Next time we’ll see the datapath and control, and walk through an
example execution.

30

