Memory Hierarchy

* Memory: hierarchy of components of various speeds and
capacities
» Hierarchy driven by cost and performance
* Inearly days
— Primary memory = main memory
— Secondary memory = disks
* Nowadays, hierarchy within the primary memory
— One or more levels of caches on-chip (SRAM, expensive, fast)
— Generally one level of cache off-chip (DRAM or SRAM; less
expensive, slower)
— Main memory (DRAM; slower; cheaper; more capacity)
3/2/99 CSE378 Intro to caches 1

Goal of amemory hierarchy

» Keep closeto the ALU the information that will be needed
now and in the near future
— Memory closest to ALU isfastest but also most expensive
* S0, keep closeto the ALU only the information that will be
needed now and in the near future
» Technology trends that make the design of a memory
hierarchy difficult:
— Speed of processors (and SRAM) increase by 60% every year
— Latency of DRAMS decrease by 7% every year

3/2/99 CSE378 Intro to caches 2

Typical numbers

Technology Typical accesstime
SRAM 3-20ns
DRAM 40-120ns
Disk milliseconds » 10° ns

3/2/99 CSE378 Intro to caches

$/Mbyte
$100-250
$1-10
$0.05-0.2

Principle of locality

* A memory hierarchy works because text and data are not

accessed randomly

» Computer programs exhibit the principle of locality
— Temporal locality: data/code used in the past islikely to be reused

in the future (e.g., code in loops, data in stacks)

— Spatial locality: data/code close (in memory addresses) to he
data/code that is being presently referenced will be referenced in
the near future (sequentiality of code, traversing an array)

3/2/99 CSE378 Intro to caches

Caches

Registers are not sufficient to keep enough data locality
closetothe ALU
Main memory (DRAM) istoo “far”. It takes many cycles
to access it

— Instruction memory is accessed every cycle
Hence need of fast memory between main memory and
registers. Thisfast memory is called acache.

— A cacheis much smaller(in amount of storage) than main memory
Goal: keep in the cache what’ s most likely to be referenced
in the near future

3/2/99 CSE378 Intro to caches 5

Basic use of caches

When fetching an instruction, first check to see whether it
isin the cache
— If so (cache hit) bring the instruction from the cache to the IR.
— If not (cache miss) go to main memory
When performing aload, first check to see whether it isin
the cache
— If cache hit, send the data from the cache to the destination register
— If cache miss go to main memory
When performing a store, several possibilities
— Ultimately, though, the store has to percolate to main memory

3/2/99 CSE378 Intro to caches 6

Levels in the memory hierarchy

64-128 ALU registers

: . On-chip cache: split I-cache; D-cach
SRAM; afewns N\ oo Pt -cache: Breache
SRAM/DRAM; Off-chip cache; 128KB - 4MB
» 10-20 ns

DRAM; 50-100 ns Main memory; up to 1GB

afew milliseconds Secondary memory; several GB

Archival storage

3/2/99 CSE378 Intro to caches 7

Caches are ubiquitous

* Not anew idea. First cachein IBM Systen/85 (late 60’ s)

» Concept of cache used in many other aspects of computer

systems
— disk cache, network server cache etc.

* Works because program exhibit locality

» Lotsof research on cachesin last 20 years because of the
increasing gap between processor speed and (DRAM)
memory latency

» Every current microprocessor has a cache hierarchy with at
least one level on-chip

3/2/99 CSE378 Intro to caches 8

Main memory access (review)

e Recal:

— In alLoad (or Store) the address in an index in the memory array

— Each byte of memory has a unique address, i.e., the mapping
between memory address and memory location is unique

ALU

Main
Mem

3/2/99 CSE378 Intro to caches

Cache Access for aLoad or an instruction fetch

» Cacheis much smaller than main memory

— Not all memory locations have a corresponding entry in the cache
at agiventime
* When amemory reference is generated, i.e., when the
ALU generates an address:
— Thereisalook-up in the cache: if the memory location is mapped

in the cache, we have a cache hit. The contents of the cache
location isreturned to the ALU.

— If wedon’t have a cache hit (cache miss), we have to look in next
level in the memory hierarchy (i.e., other cache or main memory)

3/2/99 CSE378 Intro to caches 10

How do you know
where to look?

How do you know if

thereisahit? miss

Main memory is
accessed only if there
was a cache miss

3/2/99 CSE378 Intro to caches 11

Some basic questions on cache design

* When do we bring the contents of amemory location in the
cache?

* Wheredo we put it?
* How do we know it’sthere?

» What happens if the cacheis full and we want to bring
something new?
— Infact, abetter questionis‘what happens if we want to bring

something new and the place where it’s supposed to go is already
occupied?’

3/2/99 CSE378 Intro to caches 12

Some “top level” answers

* When do we bring the contents of a memory location in the
cache? -- Thefirst timethereis a cache miss for that
location, that is “on demand”

» Where do we put it? -- Depends on cache organization
(see next dides)

* How do we know it’sthere? -- Each entry in the cache
carriesits own name, or tag

» What happensif the cacheis full and we want to bring
something new? One entry currently in the cache will be
replaced by the new one

3/2/99 CSE378 Intro to caches 13

Generic cache organization

<«Generated by ALU

Address data
Address data
“| Address data
Address data

NN 77777zzz777777777777) «—Cache entry or

cache block or

Addres RET) cache line

Address If address (tag) generated by ALU = address (tag) of a

or tag cache entry, we have a cache hit; the datain the cache
entry is good

3/2/99 CSE378 Intro to caches 14

Cache organizations

» Mapping of amemory location to a cache entry can range

from full generality to very restrictive
— Ingenera, the data portion of a cache block contains severa words

» If amemory location can be mapped anywhere in the
cache (full generality) we have afully associative cache

» If amemory location can be mapped at a single cache entry
(most restrictive) we have a direct-mapped cache

» |f amemory location can be mapped at one of several
cache entries, we have a set-associative cache

3/2/99 CSE378 Intro to caches 15

How to check for a hit?

» For afully associative cache

— Check all tag (address) fields to seeif there is a match with the
address generated by ALU

— Very expensive if has to be done fast because need to perform all
the comparisonsin parallel

— Fully associative caches do not exist for general-purpose caches
» For adirect mapped cache
— Check only the tag field of the single possible entry

» For aset associative cache
— Check the tag fields of the set of possible entries

3/2/99 CSE378 Intro to caches 16

Cache organization -- direct-mapped

* Most restricted mapping

— Direct-mapped cache. A given memory location (block) can only
be mapped in a single place in the cache. Generally this place
given by:

(block address) mod (number of blocks in cache)

3/2/99 CSE378 Intro to caches 17

Direct-mapped cache

All addresses

Main memory

3/2/99 CSE378 Intro to caches 18

Fully-associative cache

» Most genera mapping
— Fully-associative cache. A given memory location (block) can be
mapped anywhere in the cache.

— No cache of decent size isimplemented thisway but thisis the
(general) mapping for pages (disk to main memory, see later) and
for small TLB'’s (thiswill aso be explained soon).

3/2/99 CSE378 Intro to caches 19

Fully-associative cache

Cache
Any memory Main memory
block can map to
3/2/99 CSE378 Intro to caches 20

10

Set-associative caches

» Lessrestricted mapping

— Set-associative cache. Blocksin the cache are grouped into sets
and a given memory location (block) mapsinto a set. Within the
set the block can be placed anywhere. Associativities of 2 (two-
way set-associative),4, 8 and even 16 have been implemented.

» Direct-mapped = 1-way set-associative

 Fully associative with m entries is m-way set associative

3/2/99 CSE378 Intro to caches

21

Set-associative cache

Cache

3/2/99

-

Main memory

A memory block mapsinto
anyone block of a given set

CSE378 Intro to caches

22

11

Cache hit or cache miss?

* How to detect if amemory address (a byte address) has a

valid image in the cache:
» Addressisdecomposed in 3 fields:

— block offset or displacement (depends on block size)
— index (depends on number of sets and set-associativity)

— tag (the remainder of the address)
» Thetag array has awidth equal to tag

3/2/99 CSE378 Intro to caches

23

Hit detection (direct-mapped cache)

These fields Tag index d
have the same
sizé\

tag data

tag data

data

data

t

e

t data
SsSIZIrr

y

tag data

If tag(gen. address) = tag(entry pointed by
index in cache), we have a hit

3/2/99 CSE378 Intro to caches

d corresponds to number
of bytesin the block;

index corresponds to
number of blocksinthe
cache;

tag is the remaining bits
in the address.

24

12

Example of a direct-mapped cache

 DEC Station 3100

64 KB (when giving the size, or capacity, of a cache, only the data
part is counted)

Each block is 4 bytes; hence 16 KB
displacement field: d = 2 bits
index field: i =14 bits;

tag field: t =32 - 14 -2 = 16 hits

3/2/99 CSE378 Intro to caches 25
Dec 3100
Tag index d
<«16hits <hits
16 bits « 32 bits .
tag data
tag data
tag data
o caa Datato ALU
Ny

v

tag data

'q Y es; cache hit

No; cache miss; to %ajn memory

3/2/99 CSE378 Intro to caches 26

Cache with longer blocks (cap. 64 KB, block size 16 bytes)

Tag index d
16 bits 128 bits

—r <« >

tag data

tag data

tag data

tag data

tag data
Nz 24722727

v

tag data

]] . \ v
Q Y es; cache hit ;\?D ¢
No; cache miss; to %ajn memory Datato ALU

3/2/99 CSE378 Intro to caches 27

Why set-associative caches?

» Cons
— The higher the associativity the larger the number of comparisons
to be made in parallel for high-performance (can have an impact
on cycle time for on-chip caches)
* Pros
— Better hit ratio
— Great improvement from 1 to 2, lessfrom 2 to 4, minimal after that

3/2/99 CSE378 Intro to caches 28

14

3/2/99

Set associative mapping

Index = log (number of blocks)/
associativity

A

Note: we need one comparator per
bank + mux to see if we have a hit.

CSE378 Intro to caches 29

15

