Levelsin Processor Design

» Circuit design
— Keywords: transistors, wires etc.Results in gates, flip-flops etc.
» Logical design
— Putting gates (AND, NAND, ...) and flip-flops together to build
basic blocks such as registers, ALU’setc

* Register transfer

— Describes execution of instructions by showing data flow between
the basic blocks

* Processor description (the ISA)

» Systemdescription

— Includes memory hierarchy, 1/0, multiprocessing etc

2/2/99 CSE378 Single cycle
implementation.

Register transfer level

» Two types of components (cf. CSE 370)
— Combinational : the output is a function of the input (e.g., adder)
— Sequential: stateis remembered (e.g., register)

2/2/99 CSE378 Single cycle 2
implementation.

Synchronous design

» Useof aperiodic clock

— edge-triggered clocking determines when signals can be read and
when the output of circuitsis stable

— Valuesin storage elements can be updated only at clock edges

— Clock tellswhen events can occur, e.g., when signals sent by
control unit are obeyed inthe ALU

Stor. Elem 1 @’ Stor. Elem 2 Note: the same
storage element can
be read/writtenin

Clock cycle the Cycle
2/2/99 CSE378 Single cycle 3
implementation.

Stor. Elem 1 ic Stor. Elem 2
. * s
Write signal Write signal

Logic may need several cyclesto propagate values

2/2/99 CSE378 Single cycle
implementation.

Processor design: data path and control unit

CPU

/Combl national

Memory
hierarchy|

Registers + ~—~—
R «H—— sequential

Memory

bus Data path

2/2/99 CSE378 Single cycle 5
implementation.

Processor design

o Datapath
— How does data flows between various basic blocks
— What operations can be performed when data flows
— What can be done in one clock cycle
» Control unit
— Sendssignalsto data path elements
— Tellswhat datato move, where to move it, what operations are to

be performed
* Memory hierarchy
— Holds program and data
2/2/99 CSE378 Single cycle 6

implementation.

Data path basic building blocks. Storage elements

» Basic building block (at the RT level) isaregister
* Inour mini-MIPS implementation registers will be 32-bits
* A register can be read or written

i/ Input bus

| Register |‘— Write enable signal

Output bus

2/2/99 CSE378 Single cycle 7
implementation.

Register file

» Array of registers (32 for the integer registersin MIPS)

» |SA tellsusthat we should be able to:

— read 2 registers, write one register in a given instruction (at this
point we want one instruction per cycle)

— Regigter file needs to know which registers to read/write
Read register number bus 0

Write register number ﬁ 17
Write enable v ; Read register number bus 1

» Read dataoutput bus0

Write data input bus —————» Register file
— Read data output bus 1

2/2/99 CSE378 Single cycle 8
implementation.

Memory

» Conceptually, like register file but much larger

» Can only read one location or write to one location per
cycle

Write memory address

J—— Read control signal
Write enable ? ¥

Read memory address

Write data bus—————> Memory |, Readdatabus

2/2/99 CSE378 Single cycle 9
implementation.

Combinational elements

Multiplexor (Mux): selects the value of one of its Input busses
inputs to be routed to the output f i f
Mux

i

Demultiplexor (selector): routes its inputs to one of Output bus
its outputs

Select control signal

Output busses

1t

2/2/99 CSE378 Single cycle 10
implementation.

Select control signal

Arithmetic and Logic Unit (ALU - combinational)

» Computes (arithmetic or logical operation) output from its
two inputs

Zero result bit
Input bus 0
Output bus
Input bus 1
ALU control
(opcode/function)
2/2/99 CSE378 Single cycle 11

implementation.

Putting basic blocks together (skeleton of data path
for arith/logical operations)

Zero result bit
Read register number bus 0

Write register number

Write enable—+ —l I Read

register number bus 1

Read data 0
Register file

Read data 1

ALU control
(opcode/function;

Write data input bus

2/2/99 CSE378 Single cycle 12
implementation.

>l

- Read Reg #0 >
»| Read Reg #1 Read data 0
» Write Reg #

>l
P

Reg. File| Read data1

F Write data

Introducing instruction fetch .. et bit

ALU

ALU control
(opcode/function;

2/2/99

Instruction address
Instr. memory

>

CSE378 Single cycle
implementation.

13

PC has to be incremented (assume no branch)

2/2/99

Instruction address .
- Instr. memory | {nstruction

>

CSE378 Single cycle
implementation.

14

Load-Store instructions

Read enable
Instruction l
Read data0
Read Reg #0
] Read Reg #1
) ALU Data
» Write Reg # addiess
memory
Reg. File T »
@ 32-hit “ store”_data T

16-bit offset @ Write enable

Datafrom* load”

2/2/99 CSE378 Single cycle 15
implementation.

Data path for straight code(reg-reg,imm,load/store)

Instruction l
Read data0

» Read Reg #0
R » Read Reg #1
Write Reg #

4

> Data
aress
memory

.| Reg. File T

: 32-bit
;@ “ dore’ data T

16-bit offset 7@ Write enable
Data for result register b

I Mux

2/2/99 CSE378 Single cycle 16
implementation.

Branch data path

1

32-hit
Instruction
» I na' »
PC 16-bit
memory / .
2/2/99 CSE378 Single cycle 17

implementation.

