
© W.L. Ruzzo and UW CSE, 1994-2002 1

1

CSE 401
Intro Compilers

Final Review
(post-Midterm)

Larry Ruzzo

Spring 2002

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
© W.L. Ruzzo and UW CSE, 1994-2002 2

Interpret vs. compile

n Tradeoffs
n Run-time and compile-time
n Advantages of one over the other
n Basic structure of an interpreter

3

Jobs of a compiler (backend)

n Representation and placement of run-
time values

n Generate machine code
n Optimization

4

Compile- vs  Run-Time

n procedures vs activation record/stack 
frame

n scope vs environment
n symbol table vs stack frame
n variable vs memory/stack/register 

location
n lexically enclosing scope vs static link
n caller vs dynamic link

5

Run Time Storage

n Representation of data - scalars, aggregates

n memory areas: static, stack (lifo), heap
n layout of stack frame: formals, locals, 

links, etc.
n calling conventions – handling registers, 

return values, etc.
n parameter passing modes: 

call-by-value vs call-by-reference vs ...

6

Parameter passing

n Call-by-value, call-by-reference, etc.
n The mechanisms 
n The consequences of the mechanisms 

on programming language design and 
on programs



© W.L. Ruzzo and UW CSE, 1994-2002 2

7

Intermediate Code Gen

n Structure of code generation, and 
benefits of that structure

n Intermediate vs. target code generation 
(temps, machine (in)dependence, ...)

n 3-address code: what and why
n Generation of IR from AST: 

l- vs r-value, exprs, assign, arrays, ...
n Short circuit code

8

Target Code Gen

n Instruction selection (RISC/CISC)
n Register allocation
n Impact of basic architectural features

9

Optimization
n Deduce as much as possible at compile time 

about run time bindings, values, control flow,...
n Use it to: 

n Simplify/specialize unnecessarily general code 
n Reorder code
n Exploit target machine

n Scope:
n Peephole
n Local
n Global (intra-procedural)
n Inter-procedural

h
a
r
d
e
r

b
e
t
t
e
r

n Examples


