
Craig Chambers 1 CSE 401

CSE 401: Introduction to Compiler Construction

Goals:

• learn principles & practice of language implementation

• brings together theory & pragmatics of previous courses

• understand compile-time vs. run-time processing

• study interactions among:

• language features

• implementation efficiency

• compiler complexity

• architectural features

• gain more experience with object-oriented design & Java

• gain more experience working on a team

Prerequisites: 322, 326, 341, 378

Text: Engineering a Compiler

Sign up on course mailing list!
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Course Outline

Compiler front-ends:

• lexical analysis (scanning): characters → tokens

• syntactic analysis (parsing): tokens → abstract syntax trees

• semantic analysis (typechecking): annotate ASTs

Midterm

Compiler back-ends:

• intermediate code generation: ASTs → intermediate code

• target code generation: intermediate code → target code

• run-time storage layout

• target instruction selection

• register allocation

• optimizations

Final
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Project

Start with compiler for MiniJava, written in Java

Add:

• comments

• floating-point values

• arrays

• static (class) variables

• for loops

• break statements

• and more

Completed in stages over the quarter

Strongly encourage working in a 2-person team on project

• but only if joint work, not divided work

Grading based on:

• correctness

• clarity of design & implementation

• quality of test cases
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Grading

Project: 40% total

Homework: 20% total

Midterm: 15%

Final: 25%

Homework & projects due at the start of class

3 free late days, per person, for the whole quarter

• thereafter, 25% off per calendar day late
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An example compilation

Sample (extended) MiniJava program: Fact or i al . j ava

/ /  Comput es 10!  and pr i nt s i t  out

c l ass Fact or i al  {

publ i c st at i c  voi d mai n( St r i ng[ ]  a)  {
Syst em. out . pr i nt l n(

new Fac( ) . Comput eFac( 10) ) ;

    }

}

c l ass Fac {

/ /  t he r ecur s i ve hel per  f unct i on

publ i c i nt  Comput eFac( i nt  num)  {
i nt  numAux = 0;

i f  ( num < 1)
numAux = 1;

el se 
numAux = num *  t hi s . Comput eFac( num- 1) ;

r et ur n numAux;
}

}
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First step: lexical analysis

“Scanning”, “tokenizing”

Read in characters, clump into tokens

• strip out whitespace & comments in the process
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Specifying tokens: regular expressions

Example:

I dent : : = Let t er  Al phaNum*

I nt eger : : = Di gi t +

Al phaNum: : = Let t er  |  Di gi t

Let t er : : = ' a'  |  . . .  |  ' z '  |  ' A'  |  . . .  |  ' Z'

Di gi t : : = ' 0'  |  . . .  |  ' 9'
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Second step: syntactic analysis

“Parsing”

Read in tokens, turn into a tree based on syntactic structure

• report any errors in syntax
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Specifying syntax: context-free grammars

EBNF is a popular notation for CFG’s

Example:

St mt : : = i f  (  Expr  )  St mt  [ el se St mt ]

| whi l e (  Expr  )  St mt

| I D = Expr ;

| . . .

Expr : : = Expr  + Expr  |  Expr  < Expr  |  . . .

| !  Expr

| Expr  .  I D (  [ Expr  { ,  Expr } ]  )

| I D

|  I nt eger  |  . . .

| ( Expr )

| . . .

EBNF specifies concrete syntax of language

Parser usually constructs tree representing abstract syntax of 
language
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Third step: semantic analysis

“Name resolution and typechecking”

Given AST:

• figure out what declaration each name refers to

• perform typechecking and other static consistency checks

Key data structure: symbol table

• maps names to info about name derived from declaration

• tree of symbol tables corresponding to nesting of scopes

Semantic analysis steps:

1. Process each scope, top down

2. Process declarations in each scope into symbol table for 
scope

3. Process body of each scope in context of symbol table
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Fourth step: intermediate code generation

Given annotated AST & symbol tables,
translate into lower-level intermediate code

Intermediate code is a separate language

• Source-language independent

• Target-machine independent

Intermediate code is simple and regular
� good representation for doing optimizations

Might be a reasonable target language itself, e.g. Java bytecode
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Example

i nt  Fac. Comput eFac( * ? t hi s ,  i nt  num)  {

i nt  T1,  numAux,  T8,  T3,  T7,  T2,  T6,  T0;

numAux : = 1;

T0 : = 1;

T1 : = num < T0;

i f nonzer o T1 got o L0;

 T2 : = 1;

T3 : = num -  T2;

T6 : = Fac. Comput eFac( t hi s ,  T3) ;

 T7 : = num *  T6;

numAux : = T7;

got o L2;

 l abel  L0;

T8 : = 1;

numAux : = T8;

l abel  L2;

r et ur n numAux;

}
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Fifth step: target (machine) code generation

Translate intermediate code into target code

Need to do:

• instruction selection: choose target instructions for 
(subsequences of) intermediate code instructions

• register allocation: allocate intermediate code variables to 
machine registers, spilling excess to stack

• compute layout of each procedure’s stack frame &
other run-time data structures

• emit target code
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Summary of compiler phases

Ideal: many front-ends, many back-ends sharing one 
intermediate language

intermediate
form

Optimization

intermediate
form

Code Generation

target
language

Intermediate
Code Generation

Analysis
of input program

Synthesis
of output program

(front-end) (back-end)

Lexical Analysis

Syntactic Analysis

Semantic Analysis

character
stream

token
stream

abstract
syntax

tree

annotated
AST
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Other language processing tools

Compilers translate the input language into
a different, usually lower-level, target language

Interpreters directly execute the input language

• same front-end structure as a compiler

• then evaluate the annotated AST,
or translate to intermediate code and evaluate that

Software engineering tools can resemble compilers

• same front-end structure as a compiler

• then:

• pretty-print/reformat/colorize

• analyze to compute relationships like declarations/uses,
calls/callees, etc.

• analyze to find potential bugs

• aid in refactoring/restructuring/evolving programs
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Engineering issues

Compilers are hard to design so that they are

• fast

• highly optimizing

• extensible & evolvable

• correct

Some parts of compilers can be automatically generated from 
specifications, e.g., scanners, parsers, & target code 
generators

• generated parts are fast & correct

• specifications are easily evolvable

(Some of my current research is on generating fast, correct 
optimizations from specifications.)

Need good management of software complexity
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Lexical Analysis / Scanning

Purpose: turn character stream (input program)
into token stream

• parser turns token stream into syntax tree

Token:
group of characters forming basic, atomic chunk of syntax;

a “word”

Whitespace:
characters between tokens that are ignored
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Why separate lexical from syntactic analysis?

Separation of concerns / good design

• scanner:

• handle grouping chars into tokens

• ignore whitespace

• handle I/O, machine dependencies

• parser:

• handle grouping tokens into syntax trees

Restricted nature of scanning allows faster implementation

• scanning is time-consuming in many compilers
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Complications

Most languages today are “free-form”

• layout doesn’t matter

• whitespace separates tokens

Alternatives:

• Fortran: line-oriented, whitespace doesn’t separate

do 10 i  = 1. 100

. .  a loop . .

10 cont i nue

• Haskell: can use identation & layout to imply grouping

Most languages separate scanning and parsing

Alternative: C/C++/Java: type vs. identifier

• parser wants scanner to distinguish names that are types 
from names that are variables

• but scanner doesn’t know how things declared -- that’s done 
during semantic analysis a.k.a. typechecking!
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Lexemes, tokens, and patterns

Lexeme: group of characters that form a token

Token: class of lexemes that match a pattern

• token may have attributes, if more than one lexeme in token

Pattern: typically defined using a regular expression

• REs are simplest language class that’s powerful enough
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Languages and language specifications

Alphabet: a finite set of characters/symbols

String: a finite, possibly empty sequence of characters in 
alphabet

Language: a (possibly empty or infinite) set of strings

Grammar: a finite specification of a set of strings

Language automaton:
a finite machine for accepting a set of strings and rejecting all 
others

A language can be specified by many different grammars and 
automata

A grammar or automaton specifies only one language
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Classes of languages

Regular languages can be specified by
regular expressions/grammars, finite-state automata (FSAs)

Context-free languages can be specified by
context-free grammars, push-down automata (PDAs)

Turing-computable languages can be specified by
general grammars, Turing machines

all languages

Turing-computable languages

context-free languages

regular languages
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Syntax of regular expressions

Defined inductively

• base cases:

• the empty string (ε or ∈)

• a symbol from the alphabet (e.g. x )

• inductive cases:

• sequence of two RE’s: E1E2
• either of two RE’s: E1| E2

• Kleene closure (zero or more occurrences) of a RE: E*

Notes:

• can use parentheses for grouping

• precedence: *  highest, sequence, |  lowest

• whitespace insignificant
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Notational conveniences

E+ means 1 or more occurrences of E

Ek means k  occurrences of E

[ E]  means 0 or 1 occurrence of E (optional E)

{ E}  means 0 or more occurrences of E

not( x)  means any character in the alphabet but x

not( E)  means any string of characters in the alphabet but 
those strings matching E

E1- E2 means any string matching E1 except those matching E2

No additional expressive power through these conveniences
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Naming regular expressions

Can assign names to regular expressions

Can use the name of a RE in the definition of another RE

Examples:

l et t er : : = a |  b |  . . .  |  z

di gi t : : = 0 |  1 |  . . .  |  9

al phanum : : = l et t er  |  di gi t

Grammar-like notation for named RE’s: a regular grammar

Can reduce named RE’s to plain RE by “macro expansion”

• no recursive definitions allowed,
unlike full context-free grammars
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Using regular expressions to specify tokens

Identifiers

i dent : : = l et t er  ( l et t er  |  di gi t ) *

Integer constants

i nt eger : : = di gi t +

s i gn : : = + |  -

s i gned_i nt : : = [ s i gn]  i nt eger

Real number constants

r eal : : = si gned_i nt
[ f r act i on]  [ exponent ]

f r act i on : : = .  di gi t +

exponent : : = ( E| e)  s i gned_i nt
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More token specifications

String and character constants

st r i ng : : = "  char *  "

char act er : : = '  char  '

char : : = not( " | ' | \ )  |  escape

escape : : = \ ( " | ' | \ | n| r | t | v | b| a)

Whitespace

whi t espace : : = <space> |  <t ab> |  <newl i ne> |
comment

comment : : = / *  not( * / ) *  * /
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Meta-rules

Can define a rule that a legal program is a sequence of tokens 
and whitespace

pr ogr am : : = ( t oken| whi t espace) *

t oken : : = i dent  |  i nt eger  |  r eal  |  st r i ng |  . . .

But this doesn’t say how to uniquely break up an input program 
into tokens -- it’s highly ambiguous!

E.g. what tokens to make out of hi 2bob?

• one identifier, hi 2bob?

• three tokens, hi  2 bob?

• six tokens, each one character long?

The grammar states that it’s legal, but not how tokens should be 
carved up from it

Apply extra rules to say how to break up string into sequence of 
tokens

• longest match wins

• reserved words take precedence over identifiers

• yield tokens, drop whitespace
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RE specification of initial MiniJava lexical structure

Pr ogr am : : = ( Token |  Whi t espace) *

Token : : = I D |  I nt eger  |  Reser vedWor d |  
Oper at or  |  Del i mi t er

I D : : = Let t er  ( Let t er  |  Di gi t ) *

Let t er : : = a |  . . .  |  z  |  A |  . . .  |  Z

Di gi t : : = 0 |  . . .  |  9

I nt eger : : = Di gi t +

Reser vedWor d: : = cl ass  |  publ i c  |  st at i c  |  
ext ends  |  voi d |  i nt  |
bool ean |  i f  |  el se |
whi l e |  r et ur n |  t r ue |  f al se |  
t hi s  |  new |  St r i ng |  mai n |
Syst em. out . pr i nt l n

Oper at or : : = + |  -  |  *  |  /  |  < |  <= |  >= |
> |  == |  ! = |  && |  !

Del i mi t er : : = ;  |  .  |  ,  |  = |
(  |  )  |  {  |  }  |  [  |  ]

Whi t espace : : = <space> |  <t ab> |  <newl i ne>
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Building scanners from RE patterns

Convert RE specification into finite state automaton (FSA)

Convert FSA into scanner implementation

• by hand into collection of procedures

• mechanically into table-driven scanner
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Finite state automata

An FSA has:

• a set of states

• one marked the initial state

• some marked final states

• a set of transitions from state to state

• each transition labelled with a symbol from the alphabet or ε

Operate by reading symbols and taking transitions,
beginning with the start state

• if no transition with a matching label is found, reject

When done with input, accept if in final state, reject otherwise

/ /**

not ( * ) *

not ( * , / )
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Determinism

FSA can be deterministic or nondeterministic

Deterministic: always know which way to go

• at most 1 arc leaving a state with particular symbol

• no ε arcs

Nondeterministic: may need to explore multiple paths, only 
choose right one later

Example:

0

1 1

1

000
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NFAs vs. DFAs

A problem:

• RE’s (e.g. specifications) map to NFA’s easily

• Can write code from DFA easily

How to bridge the gap?

Can it be bridged?
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A solution

Cool algorithm to translate any NFA into equivalent DFA!

• proves that NFAs aren’t more expressive than DFAs

Plan:

1) Convert RE into NFA [they’re equivalent]

2) Convert NFA into DFA

3) Convert DFA into code

Can be done by hand, or fully automatically
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RE � NFA

Define by cases

ε

x

E1 E2

E1 |  E2

E *
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NFA � DFA

Problem: NFA can “choose” among alternative paths,
while DFA must have only one path

Solution: subset construction of DFA

• each state in DFA represents set of states in NFA, all that 
the NFA might be in during its traversal
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Subset construction algorithm

Given NFA with states and transitions

• label all NFA states uniquely

Create start state of DFA

• label it with the set of NFA states that can be reached by
ε transitions (i.e. without consuming any input)

Process the start state

To process a DFA state S with label {s1,..,sN}:

For each symbol x in the alphabet:

• compute the set {t1,..,tM} of NFA states reached from any of 
the NFA states in {s1,..,sN} by an x transition followed by 
any number of ε transitions

• if {t1,..,tM} not empty:

• if an existing DFA state T has {t1,..,tM} as a label,
add a transition labeled x from S to T

• otherwise create a new DFA state T labeled {t1,..,tM},
add a transition labeled x from S to T, and process T

A DFA state is final iff
at least one of the NFA states in its label is final
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DFA � code

Option 1: implement scanner by hand using procedures

• one procedure for each token

• each procedure reads characters

• choices implemented using if & switch statements

Pros

• straightforward to write by hand

• fast

Cons

• a fair amount of tedious work

• may have subtle differences from language specification

Craig Chambers 39 CSE 401

DFA � code (cont.)

Option 2: use tool to generate table-driven scanner

• rows: states of DFA

• columns: input characters + EOF

• entries: action

• go to new state

• emit previous token, retry in start state

• emit previous token, then done

• done

• report lexical error

Pros

• convenient for automatic generation

• exactly matches specification, if tool-generated

Cons

• “magic”

• table lookups may be slower than direct code

• but switch statements get compiled into table lookups, so....

• can translate table lookups into switch statements, if beneficial
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Automatic scanner generation in MiniJava

We use the j f l ex  tool to automatically create a scanner from a 
specification file, Scanner / mi ni j ava. j f l ex

(We use the CUP tool to automatically create a parser from a 
specification file, Par ser / mi ni j ava. cup, which also 
generates all the code for the token classes used in the 
scanner, via the Symbol  class.)

The MiniJava Makef i l e automatically rebuilds the scanner
(or parser) whenever its specification file changes
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Symbol class

Lexemes are represented as instances of class Symbol

c l ass Symbol  {

i nt  sym; / /  which token class?

Obj ect  val ue; / /  any extra data for this lexeme

. . .

}

A different integer constant is defined for each token class, in the 
sym helper class

c l ass sym {

s t at i c i nt  CLASS = 1;

s t at i c i nt  I DENTI FI ER = 2;

s t at i c i nt  COMMA = 3;

. . .

}

Can use this in printing code for Symbol s

• see symbol ToSt r i ng in mi ni j ava. j f l ex

Craig Chambers 42 CSE 401

Token declarations

Declare new token classes in Par ser / mi ni j ava. cup,
using t er mi nal  declarations

• include Java type if Symbol  stores extra data

Examples:

/ *  r eser ved wor ds:  * /

t er mi nal  CLASS,  PUBLI C,  STATI C,  EXTENDS;

. . .

/ *  oper at or s:  * /

t er mi nal  PLUS,  MI NUS,  STAR,  SLASH,  EXCLAI M;

. . .

/ *  del i mi t er s :  * /

t er mi nal  OPEN_PAREN,  CLOSE_PAREN;

t er mi nal  EQUALS,  SEMI COLON,  COMMA,  PERI OD;

. . .

/ *  t okens wi t h val ues:  * /

t er mi nal  St r i ng I DENTI FI ER;

t er mi nal  I nt eger  I NT_LI TERAL;
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j f l ex  token specifications

Helper definitions for character classes and regular expressions

l et t er  = [ a- zA- Z]

eol  = [ \ r \ n]

(Simple) token definitions are of the form:

regexp {  Java stmt }

regexp can be (at least):

• a string literal in double-quotes, e.g. " c l ass" , " <="

• a reference to a named helper, in braces, e.g. { l et t er }

• a character list or range, in square brackets, e.g. [ a- zA- Z]

• a negated character list or range, e.g. [ ^ \ r \ n]

• .  (which matches any single character)

• regexp regexp, regexp |  regexp, regexp* , regexp+, 
regexp?, ( regexp)

Java stmt (the accept action) is typically:

• r et ur n symbol ( sym. CLASS) ;  for a simple token

• r et ur n symbol ( sym. CLASS,  yyt ext ( ) ) ;  for a token 
with extra data based on the lexeme string yyt ext ( )

• empty for whitespace


