
Craig Chambers 1 CSE 401

CSE 401: Introduction to Compiler Construction

Goals:

• learn principles & practice of language implementation

• brings together theory & pragmatics of previous courses

• understand compile-time vs. run-time processing

• study interactions among:

• language features

• implementation efficiency

• compiler complexity

• architectural features

• gain more experience with object-oriented design & Java

• gain more experience working on a team

Prerequisites: 322, 326, 341, 378

Text: Engineering a Compiler

Sign up on course mailing list!

Craig Chambers 2 CSE 401

Course Outline

Compiler front-ends:

• lexical analysis (scanning): characters → tokens

• syntactic analysis (parsing): tokens → abstract syntax trees

• semantic analysis (typechecking): annotate ASTs

Midterm

Compiler back-ends:

• intermediate code generation: ASTs → intermediate code

• target code generation: intermediate code → target code

• run-time storage layout

• target instruction selection

• register allocation

• optimizations

Final

Craig Chambers 3 CSE 401

Project

Start with compiler for MiniJava, written in Java

Add:

• comments

• floating-point values

• arrays

• static (class) variables

• for loops

• break statements

• and more

Completed in stages over the quarter

Strongly encourage working in a 2-person team on project

• but only if joint work, not divided work

Grading based on:

• correctness

• clarity of design & implementation

• quality of test cases

Craig Chambers 4 CSE 401

Grading

Project: 40% total

Homework: 20% total

Midterm: 15%

Final: 25%

Homework & projects due at the start of class

3 free late days, per person, for the whole quarter

• thereafter, 25% off per calendar day late

Craig Chambers 5 CSE 401

An example compilation

Sample (extended) MiniJava program: Fact or i al . j ava

/ / Comput es 10! and pr i nt s i t out

c l ass Fact or i al {

publ i c st at i c voi d mai n(St r i ng[] a) {
Syst em. out . pr i nt l n(

new Fac() . Comput eFac(10)) ;

 }

}

c l ass Fac {

/ / t he r ecur s i ve hel per f unct i on

publ i c i nt Comput eFac(i nt num) {
i nt numAux = 0;

i f (num < 1)
numAux = 1;

el se
numAux = num * t hi s . Comput eFac(num- 1) ;

r et ur n numAux;
}

}

Craig Chambers 6 CSE 401

First step: lexical analysis

“Scanning”, “tokenizing”

Read in characters, clump into tokens

• strip out whitespace & comments in the process

Craig Chambers 7 CSE 401

Specifying tokens: regular expressions

Example:

I dent : : = Let t er Al phaNum*

I nt eger : : = Di gi t +

Al phaNum: : = Let t er | Di gi t

Let t er : : = ' a' | . . . | ' z ' | ' A' | . . . | ' Z'

Di gi t : : = ' 0' | . . . | ' 9'

Craig Chambers 8 CSE 401

Second step: syntactic analysis

“Parsing”

Read in tokens, turn into a tree based on syntactic structure

• report any errors in syntax

Craig Chambers 9 CSE 401

Specifying syntax: context-free grammars

EBNF is a popular notation for CFG’s

Example:

St mt : : = i f (Expr) St mt [el se St mt]

| whi l e (Expr) St mt

| I D = Expr ;

| . . .

Expr : : = Expr + Expr | Expr < Expr | . . .

| ! Expr

| Expr . I D ([Expr { , Expr }])

| I D

| I nt eger | . . .

| (Expr)

| . . .

EBNF specifies concrete syntax of language

Parser usually constructs tree representing abstract syntax of
language

Craig Chambers 10 CSE 401

Third step: semantic analysis

“Name resolution and typechecking”

Given AST:

• figure out what declaration each name refers to

• perform typechecking and other static consistency checks

Key data structure: symbol table

• maps names to info about name derived from declaration

• tree of symbol tables corresponding to nesting of scopes

Semantic analysis steps:

1. Process each scope, top down

2. Process declarations in each scope into symbol table for
scope

3. Process body of each scope in context of symbol table

Craig Chambers 11 CSE 401

Fourth step: intermediate code generation

Given annotated AST & symbol tables,
translate into lower-level intermediate code

Intermediate code is a separate language

• Source-language independent

• Target-machine independent

Intermediate code is simple and regular
� good representation for doing optimizations

Might be a reasonable target language itself, e.g. Java bytecode

Craig Chambers 12 CSE 401

Example

i nt Fac. Comput eFac(* ? t hi s , i nt num) {

i nt T1, numAux, T8, T3, T7, T2, T6, T0;

numAux : = 1;

T0 : = 1;

T1 : = num < T0;

i f nonzer o T1 got o L0;

 T2 : = 1;

T3 : = num - T2;

T6 : = Fac. Comput eFac(t hi s , T3) ;

 T7 : = num * T6;

numAux : = T7;

got o L2;

 l abel L0;

T8 : = 1;

numAux : = T8;

l abel L2;

r et ur n numAux;

}

Craig Chambers 13 CSE 401

Fifth step: target (machine) code generation

Translate intermediate code into target code

Need to do:

• instruction selection: choose target instructions for
(subsequences of) intermediate code instructions

• register allocation: allocate intermediate code variables to
machine registers, spilling excess to stack

• compute layout of each procedure’s stack frame &
other run-time data structures

• emit target code

Craig Chambers 14 CSE 401

Summary of compiler phases

Ideal: many front-ends, many back-ends sharing one
intermediate language

intermediate
form

Optimization

intermediate
form

Code Generation

target
language

Intermediate
Code Generation

Analysis
of input program

Synthesis
of output program

(front-end) (back-end)

Lexical Analysis

Syntactic Analysis

Semantic Analysis

character
stream

token
stream

abstract
syntax

tree

annotated
AST

Craig Chambers 15 CSE 401

Other language processing tools

Compilers translate the input language into
a different, usually lower-level, target language

Interpreters directly execute the input language

• same front-end structure as a compiler

• then evaluate the annotated AST,
or translate to intermediate code and evaluate that

Software engineering tools can resemble compilers

• same front-end structure as a compiler

• then:

• pretty-print/reformat/colorize

• analyze to compute relationships like declarations/uses,
calls/callees, etc.

• analyze to find potential bugs

• aid in refactoring/restructuring/evolving programs

Craig Chambers 16 CSE 401

Engineering issues

Compilers are hard to design so that they are

• fast

• highly optimizing

• extensible & evolvable

• correct

Some parts of compilers can be automatically generated from
specifications, e.g., scanners, parsers, & target code
generators

• generated parts are fast & correct

• specifications are easily evolvable

(Some of my current research is on generating fast, correct
optimizations from specifications.)

Need good management of software complexity

Craig Chambers 17 CSE 401

Lexical Analysis / Scanning

Purpose: turn character stream (input program)
into token stream

• parser turns token stream into syntax tree

Token:
group of characters forming basic, atomic chunk of syntax;

a “word”

Whitespace:
characters between tokens that are ignored

Craig Chambers 18 CSE 401

Why separate lexical from syntactic analysis?

Separation of concerns / good design

• scanner:

• handle grouping chars into tokens

• ignore whitespace

• handle I/O, machine dependencies

• parser:

• handle grouping tokens into syntax trees

Restricted nature of scanning allows faster implementation

• scanning is time-consuming in many compilers

Craig Chambers 19 CSE 401

Complications

Most languages today are “free-form”

• layout doesn’t matter

• whitespace separates tokens

Alternatives:

• Fortran: line-oriented, whitespace doesn’t separate

do 10 i = 1. 100

. . a loop . .

10 cont i nue

• Haskell: can use identation & layout to imply grouping

Most languages separate scanning and parsing

Alternative: C/C++/Java: type vs. identifier

• parser wants scanner to distinguish names that are types
from names that are variables

• but scanner doesn’t know how things declared -- that’s done
during semantic analysis a.k.a. typechecking!

Craig Chambers 20 CSE 401

Lexemes, tokens, and patterns

Lexeme: group of characters that form a token

Token: class of lexemes that match a pattern

• token may have attributes, if more than one lexeme in token

Pattern: typically defined using a regular expression

• REs are simplest language class that’s powerful enough

Craig Chambers 21 CSE 401

Languages and language specifications

Alphabet: a finite set of characters/symbols

String: a finite, possibly empty sequence of characters in
alphabet

Language: a (possibly empty or infinite) set of strings

Grammar: a finite specification of a set of strings

Language automaton:
a finite machine for accepting a set of strings and rejecting all
others

A language can be specified by many different grammars and
automata

A grammar or automaton specifies only one language

Craig Chambers 22 CSE 401

Classes of languages

Regular languages can be specified by
regular expressions/grammars, finite-state automata (FSAs)

Context-free languages can be specified by
context-free grammars, push-down automata (PDAs)

Turing-computable languages can be specified by
general grammars, Turing machines

all languages

Turing-computable languages

context-free languages

regular languages

Craig Chambers 23 CSE 401

Syntax of regular expressions

Defined inductively

• base cases:

• the empty string (ε or ∈)

• a symbol from the alphabet (e.g. x)

• inductive cases:

• sequence of two RE’s: E1E2
• either of two RE’s: E1| E2

• Kleene closure (zero or more occurrences) of a RE: E*

Notes:

• can use parentheses for grouping

• precedence: * highest, sequence, | lowest

• whitespace insignificant

Craig Chambers 24 CSE 401

Notational conveniences

E+ means 1 or more occurrences of E

Ek means k occurrences of E

[E] means 0 or 1 occurrence of E (optional E)

{ E} means 0 or more occurrences of E

not(x) means any character in the alphabet but x

not(E) means any string of characters in the alphabet but
those strings matching E

E1- E2 means any string matching E1 except those matching E2

No additional expressive power through these conveniences

Craig Chambers 25 CSE 401

Naming regular expressions

Can assign names to regular expressions

Can use the name of a RE in the definition of another RE

Examples:

l et t er : : = a | b | . . . | z

di gi t : : = 0 | 1 | . . . | 9

al phanum : : = l et t er | di gi t

Grammar-like notation for named RE’s: a regular grammar

Can reduce named RE’s to plain RE by “macro expansion”

• no recursive definitions allowed,
unlike full context-free grammars

Craig Chambers 26 CSE 401

Using regular expressions to specify tokens

Identifiers

i dent : : = l et t er (l et t er | di gi t) *

Integer constants

i nt eger : : = di gi t +

s i gn : : = + | -

s i gned_i nt : : = [s i gn] i nt eger

Real number constants

r eal : : = si gned_i nt
[f r act i on] [exponent]

f r act i on : : = . di gi t +

exponent : : = (E| e) s i gned_i nt

Craig Chambers 27 CSE 401

More token specifications

String and character constants

st r i ng : : = " char * "

char act er : : = ' char '

char : : = not(" | ' | \) | escape

escape : : = \ (" | ' | \ | n| r | t | v | b| a)

Whitespace

whi t espace : : = <space> | <t ab> | <newl i ne> |
comment

comment : : = / * not(* /) * * /

Craig Chambers 28 CSE 401

Meta-rules

Can define a rule that a legal program is a sequence of tokens
and whitespace

pr ogr am : : = (t oken| whi t espace) *

t oken : : = i dent | i nt eger | r eal | st r i ng | . . .

But this doesn’t say how to uniquely break up an input program
into tokens -- it’s highly ambiguous!

E.g. what tokens to make out of hi 2bob?

• one identifier, hi 2bob?

• three tokens, hi 2 bob?

• six tokens, each one character long?

The grammar states that it’s legal, but not how tokens should be
carved up from it

Apply extra rules to say how to break up string into sequence of
tokens

• longest match wins

• reserved words take precedence over identifiers

• yield tokens, drop whitespace

Craig Chambers 29 CSE 401

RE specification of initial MiniJava lexical structure

Pr ogr am : : = (Token | Whi t espace) *

Token : : = I D | I nt eger | Reser vedWor d |
Oper at or | Del i mi t er

I D : : = Let t er (Let t er | Di gi t) *

Let t er : : = a | . . . | z | A | . . . | Z

Di gi t : : = 0 | . . . | 9

I nt eger : : = Di gi t +

Reser vedWor d: : = cl ass | publ i c | st at i c |
ext ends | voi d | i nt |
bool ean | i f | el se |
whi l e | r et ur n | t r ue | f al se |
t hi s | new | St r i ng | mai n |
Syst em. out . pr i nt l n

Oper at or : : = + | - | * | / | < | <= | >= |
> | == | ! = | && | !

Del i mi t er : : = ; | . | , | = |
(|) | { | } | [|]

Whi t espace : : = <space> | <t ab> | <newl i ne>

Craig Chambers 30 CSE 401

Building scanners from RE patterns

Convert RE specification into finite state automaton (FSA)

Convert FSA into scanner implementation

• by hand into collection of procedures

• mechanically into table-driven scanner

Craig Chambers 31 CSE 401

Finite state automata

An FSA has:

• a set of states

• one marked the initial state

• some marked final states

• a set of transitions from state to state

• each transition labelled with a symbol from the alphabet or ε

Operate by reading symbols and taking transitions,
beginning with the start state

• if no transition with a matching label is found, reject

When done with input, accept if in final state, reject otherwise

/ /**

not (*) *

not (* , /)

Craig Chambers 32 CSE 401

Determinism

FSA can be deterministic or nondeterministic

Deterministic: always know which way to go

• at most 1 arc leaving a state with particular symbol

• no ε arcs

Nondeterministic: may need to explore multiple paths, only
choose right one later

Example:

0

1 1

1

000

Craig Chambers 33 CSE 401

NFAs vs. DFAs

A problem:

• RE’s (e.g. specifications) map to NFA’s easily

• Can write code from DFA easily

How to bridge the gap?

Can it be bridged?

Craig Chambers 34 CSE 401

A solution

Cool algorithm to translate any NFA into equivalent DFA!

• proves that NFAs aren’t more expressive than DFAs

Plan:

1) Convert RE into NFA [they’re equivalent]

2) Convert NFA into DFA

3) Convert DFA into code

Can be done by hand, or fully automatically

Craig Chambers 35 CSE 401

RE � NFA

Define by cases

ε

x

E1 E2

E1 | E2

E *

Craig Chambers 36 CSE 401

NFA � DFA

Problem: NFA can “choose” among alternative paths,
while DFA must have only one path

Solution: subset construction of DFA

• each state in DFA represents set of states in NFA, all that
the NFA might be in during its traversal

Craig Chambers 37 CSE 401

Subset construction algorithm

Given NFA with states and transitions

• label all NFA states uniquely

Create start state of DFA

• label it with the set of NFA states that can be reached by
ε transitions (i.e. without consuming any input)

Process the start state

To process a DFA state S with label {s1,..,sN}:

For each symbol x in the alphabet:

• compute the set {t1,..,tM} of NFA states reached from any of
the NFA states in {s1,..,sN} by an x transition followed by
any number of ε transitions

• if {t1,..,tM} not empty:

• if an existing DFA state T has {t1,..,tM} as a label,
add a transition labeled x from S to T

• otherwise create a new DFA state T labeled {t1,..,tM},
add a transition labeled x from S to T, and process T

A DFA state is final iff
at least one of the NFA states in its label is final

Craig Chambers 38 CSE 401

DFA � code

Option 1: implement scanner by hand using procedures

• one procedure for each token

• each procedure reads characters

• choices implemented using if & switch statements

Pros

• straightforward to write by hand

• fast

Cons

• a fair amount of tedious work

• may have subtle differences from language specification

Craig Chambers 39 CSE 401

DFA � code (cont.)

Option 2: use tool to generate table-driven scanner

• rows: states of DFA

• columns: input characters + EOF

• entries: action

• go to new state

• emit previous token, retry in start state

• emit previous token, then done

• done

• report lexical error

Pros

• convenient for automatic generation

• exactly matches specification, if tool-generated

Cons

• “magic”

• table lookups may be slower than direct code

• but switch statements get compiled into table lookups, so....

• can translate table lookups into switch statements, if beneficial

Craig Chambers 40 CSE 401

Automatic scanner generation in MiniJava

We use the j f l ex tool to automatically create a scanner from a
specification file, Scanner / mi ni j ava. j f l ex

(We use the CUP tool to automatically create a parser from a
specification file, Par ser / mi ni j ava. cup, which also
generates all the code for the token classes used in the
scanner, via the Symbol class.)

The MiniJava Makef i l e automatically rebuilds the scanner
(or parser) whenever its specification file changes

Craig Chambers 41 CSE 401

Symbol class

Lexemes are represented as instances of class Symbol

c l ass Symbol {

i nt sym; / / which token class?

Obj ect val ue; / / any extra data for this lexeme

. . .

}

A different integer constant is defined for each token class, in the
sym helper class

c l ass sym {

s t at i c i nt CLASS = 1;

s t at i c i nt I DENTI FI ER = 2;

s t at i c i nt COMMA = 3;

. . .

}

Can use this in printing code for Symbol s

• see symbol ToSt r i ng in mi ni j ava. j f l ex

Craig Chambers 42 CSE 401

Token declarations

Declare new token classes in Par ser / mi ni j ava. cup,
using t er mi nal declarations

• include Java type if Symbol stores extra data

Examples:

/ * r eser ved wor ds: * /

t er mi nal CLASS, PUBLI C, STATI C, EXTENDS;

. . .

/ * oper at or s: * /

t er mi nal PLUS, MI NUS, STAR, SLASH, EXCLAI M;

. . .

/ * del i mi t er s : * /

t er mi nal OPEN_PAREN, CLOSE_PAREN;

t er mi nal EQUALS, SEMI COLON, COMMA, PERI OD;

. . .

/ * t okens wi t h val ues: * /

t er mi nal St r i ng I DENTI FI ER;

t er mi nal I nt eger I NT_LI TERAL;

Craig Chambers 43 CSE 401

j f l ex token specifications

Helper definitions for character classes and regular expressions

l et t er = [a- zA- Z]

eol = [\ r \ n]

(Simple) token definitions are of the form:

regexp { Java stmt }

regexp can be (at least):

• a string literal in double-quotes, e.g. " c l ass" , " <="

• a reference to a named helper, in braces, e.g. { l et t er }

• a character list or range, in square brackets, e.g. [a- zA- Z]

• a negated character list or range, e.g. [^ \ r \ n]

• . (which matches any single character)

• regexp regexp, regexp | regexp, regexp* , regexp+,
regexp?, (regexp)

Java stmt (the accept action) is typically:

• r et ur n symbol (sym. CLASS) ; for a simple token

• r et ur n symbol (sym. CLASS, yyt ext ()) ; for a token
with extra data based on the lexeme string yyt ext ()

• empty for whitespace

