Project 4: The MiniJava I nter mediate
Code Generator

Due: Wednesday, February 28, 12:30 pm.

In this assignment you will extend the initial MiniJava intermediate code@en¢o
implement the extensions described ind¢barse project description handotihis will
complete your extended MiniJava compiler!

You should implement theower operations for all the new language constructs and
features in the extended MiniJava language. This includes inserting coeromns fr
integers to doubles wherever necessary, and for generating tests for null aremgcesfe

and out-of-bounds array references and negative-sized array creations. To support
System out . pri nt| n on doubles, a new runtime function should be added to the
Target/ Runti me/ runti me. c file. Thel ower operations should use the IL classes
defined in thd L subdirectory, but you should not make any changes to these IL classes.

After lowering, your lowered IL program should be able to be translated into x86 target
code, which then compiles, links, and runs correctly. (The x86 code generatoady alre
fully implemented; you should not make any changes to it.)

In all cases, as long as the MiniJava language restrictions are sasidfled)ava
program should compile into an executable program that then runs the same as the
equivalent Java program.

Do the following:

1. Add and/or modify classes in tA&T and/orSynbol Tabl e subdirectories to
perform lowering, and modify thEar get / Runt i me/ r unt i ne. c file to
include any new runtime functions you need. (You should not modify any files in
thel L or Tar get subdirectories, other than thant i ne. c file.)

2. Develop test cases that demonstrate that your extended compiler works properly,
both in cases that should now compile and run successfully and in cases that
should now compile successfully but throw exceptions when run. (Since
execution ends with the first exception, you'll likely need several excepsing te
case files to test the different excepting cases.) You may assume thasyour t
cases pass all lexical, syntactic, and semantic checks, and you may assathe tha
MiniJava constructs from the initial language (before your extensions) are
compiled and executed correctly; you only need to test compilation and execution
of the new language features. T3enpl ePr ogr ans directory contains some

files that should compile and execute successfully after you make your changes;
some of the files should compile and execute successfully with the initsdrer
of the MiniJava compiler.

You can use thel ower -printl L options to the MiniJava compiler to just run the
lowering phase and print out the IL program that it produces. Sée#te | oweri ng
target in thévakef i | e for an example. You can use ther i nt Code option (the-
codegen option is the default) to the MiniJava compiler to run the full compiler and
print out the assembly code that it produces. Sektdbé_codegen target in the
Makef i | e for an example, which also compiles thent i ne. c file, runs the
assembler on the generated assembly file, links it with the conmmpiledi ne. c file,

and finally runs the linked executable program. (This target should be run only on an x86
machine, so that the generated x86 assembly code can be compiled and run
successfully.) Feel free to make your own target(s) to make running the testeyou li
easier and more mechanical.

Turn in the following:

1. Your new and/or modifiedST/ *. j ava, Synbol Tabl e/ *. j ava, and/or
Target/ Runti me/ runti nme. c files. Clearly identify any modifications to
existing files using comments.

2. Your test cases, with names of the forame. | egal . j ava for test cases that
should compile and run successfully aradre. i | | egal . j ava for test cases
that should compile successfully but throw exceptions when run.

3. A transcript of running your intermediate code generator and printing out the
resulting IL program (not the final assembly code) on each of your test cases.

4. A transcript of running the compiled code for each of your test cases.

As with the last project, name your root project directory MiniJava, and suiemit t
directory. Put your test programs in the SamplePrograms directory. Zip it up andt email
to Ben

