10/3/2008

Bottom Up Parsing

Construct parse tree for input from leaves up
— reducing a string of tokens to single start symbol
(inverse of deriving a string of tokens from start
symbol)
“Shift-reduce” strategy:

— read (“shift”) tokens until seen r.h.s. of “correct”
production xyzabcdef A= bc.D

— reduce handle to I.h.s. nonterminal, then continue

— done when all input read and reduced to start
nonterminal

From CSE401 Wi08 28

LR(K)

* LR(k) parsing
— Left-to-right scan of input, Rightmost derivation
— k tokens of look ahead

+ Strictly more general than LL(k)

— Gets to look at whole rhs of production before deciding what
to do, not just first k tokens of rhs

— can handle left recursion and common prefixes fine
— Still as efficient as any top-down or bottom-up parsing
method
+ Complex to implement
— need automatic tools to construct parser from grammar

From CSE401 Wi08 29

LR Parsing Tables

Construct parsing tables implementing a FSA with a
stack
« rows: states of parser
« columns: token(s) of lookahead
« entries: action of parser
« shift, goto state x
« reduce production “X ::= RHS”
« accept
* error
Algorithm to construct FSA similar to algorithm to build
DFA from NFA
« each state represents set of possible places in parsing

LR(K) algorithm builds huge tables

From CSE401 Wi08 30

LALR-Look Ahead LR

LALR(K) algorithm has fewer states ==> smaller
tables
— less general than LR(k), but still good in practice
— size of tables acceptable in practice
* k==1in practice
— most parser generators, including yacc and
jflex, are LALR(1)

From CSE401 Wi08 31

10/3/2008

Global Plan for LR(0) Parsing

* Goal: Set up the tables for parsing an LR(0)
grammar

— Add S’ --> S$ to the grammar, i.e. solve the
problem for a new grammar with terminator

— Compute parser states by starting with state 1
containing added production, S’ --> .S$

— Form closures of states and shifting to complete
diagram

— Convert diagram to transition table for PDA

— Step through parse using table and stack
From CSE401 Wi08 32

LR(0) Parser Generation

Example grammar:
S’ ::=5S §
S beep | { L }
L :: S| L ;S
+ Key idea: simulate where input might be in grammar
as it reads tokens
* "Where input might be in grammar" captured by set
of items, which forms a state in the parser's FSA
— LR(0) item: 1hs ::= rhs production, with dot in rhs
somewhere marking what's been read (shifted) so far
« LR(k) item: also add k tokens of lookahead to each item

// always add this production

— Initial item: 87 ::= . S $

From CSE401 Wi08 33

Closure

Initial state is closure of initial item

 closure: if dot before non-terminal, add all
productions for that non-terminal with dot at
the start
— "epsilon transitions"

Initial state (1):

S’::= .S $
S ::= . beep
S {L}
From CSE401 Wi08 34

State Transitions

Given set of items, compute new state(s) for each
symbol (terminal and non-terminal) after dot
— state transitions correspond to shift actions

New item derived from old item by shifting dot over
symbol
— do closure to compute new state Initial state (1):

S’ ::= .5 $ S ::= . beep S ::= .{ L}
— State (2) reached on transition that shifts S :
S’ ::=58 . $
— State (3) reached on transition that shifts beep:
S ::= beep . S = { . L}
— State (4) reached on transition that shifts {: L S
L L ; S
) S beep
From CSE401 Wi08 s _ { iS }

10/3/2008

Accepting Transitions

If state has s’ ::= sitem,
then add transition labeleds to the accept
action

Example:

S’ =5 . §
has transition labeled $ to accept action

From CSE401 Wi08

Reducing States

If state has 1hs ::= rhs . item,thenithasa

reduce lhs ::= rhs action
Example:

S ::= beep .

has reduce S ::= beep action

No label; this state always reduces this production
— what if other items in this state shift, or accept?
— what if other items in this state reduce differently?

From CSE401 Wi08 37

Rest of the States, Part 1
State (4): if shift beep, goto State (3)
State (4): if shift {, goto State (4)
State (4): if shift s, goto State (5)
State (4): if shift L, goto State (6)

State (5):
L ::=95 .
State (6):
S ::={L .}
L ::=L . ; S

State (6): if shift },
State:(G)uif shift ;,

goto State (7)
goto State (8)

Rest of the States (Part 2)

State (7):
S ::={ L} .
State (8):
L ::=L; .S
S ::= . beep
S ::= . { L}

State (8): if shift beep,
State (8): if shift {,
State (8): if shift s,

goto State (3)
goto State (4)
goto State (9)

State (9):

From CsEWdTWiod ¢ O (whew)

39

10/3/2008

LR(0) State Diagram

g S'->S$

S’::=8$
S ::=beep | { L}
L::=8 | L ;S
Ys > s¢ |beep S ->beep L--> L,.S
S-> {L} eep { S--> {L}
s-->beep{ 4s->{1} S --> beep
L .
L
S S
S

Building Table of States & Transitions

Create a row for each state
Create a column for each terminal, non-terminal, and $
For every "state (i): if shift X goto state (j)" transition:
« if X is a terminal, put "shift, goto j" action in row i, column X
« if X is a non-terminal, put "goto j* action in row i, column X
For every "state (i): if $ accept” transition:
* put "accept" action in row i, column $
For every "state (i): 1hs ::= rhs."action:

*put"reduce lhs ::= rhs"action in all columns of row i

From CSE401 Wi08 40 From CSE401 Wi08 41
St { } beep s L H
1 |sg4 5,93 92
. 2 al
Table of This Grammar Example s
7
ss =
State { } | bee ; S | L[S 5
P beep | { L } 7
1 |s,04 s,93 g2 S| L;s s
2 al 9 Mﬂ L1 s
' f(a thee fheenls
P ee ee|
3 reduce S ::= beep % 12959"3 p; beeg g
4 5,94‘ ‘ 5,03 ‘ ‘ g5 ‘ g6 ‘ 1§4L6 b335§§$
1{4L6;8 {beep $
5 reduce L ::= S 1{416:8{4 beep}}$
ikt afibes :
6 ‘5'97‘ ‘5'98‘ 1416181416 $
7 reduce S ::= { L } %jtgzgsagmw s
8 sg4‘ ‘ s,03 ‘ ‘gg‘ ‘ ﬂﬁtgn e
. ’ 182 $
o o= . t
me(*‘mm%m reduce L ::= L ; S 2 :Cui?csmmwiox 43

10/3/2008

with shift-reduce parsing
Shift/reduce conflict:

Reduce/reduce conflict:

« state has more than one reduce action

From CSE401 Wi08

Problems In Shift-Reduce Parsing

Can write grammars that cannot be handled

« state has both shift action(s) and reduce actions

Shift/Reduce Conflicts
LR(0) example:
E ::=E+T | T
State:E ::=E . + T
E ::=T .
— Can shift +
— CanreduceE :

T

LR(k) example:
S .

if E then S |
if E then S else S |
State: s ::= if E then S .
S ::= if E then S . else S
— Can shiftelse
From (SEdb@flkeduce S ::

if E then S

Avoiding Shift-Reduce Conflicts

Can rewrite grammar to remove conflict

Reduce/Reduce Conflicts

Example:
Stmt ::= Type id ; | LHS = Expr ; |
— E.g. Matched Stmt vs. Unmatched Stmt
Can resolve in favor of shift action LAS ::= id | LAS [Expr] | ...
— try to find longest r.h.s. before reducing
works well in practice Type ::= id | Type [] |
yacc, jflex, etal. do this State: Type ::= id .
LHS ::= id .
Can reduce type id
Can reduce vus id
From CSE401 Wi08 46 From CSE401 Wi08 47

Avoid Reduce/Reduce Conflicts

Can rewrite grammar to remove conflict
— can be hard
« e.g. C/C++ declaration vs. expression problem
< e.g. MiniJava array declaration vs. array store problem
Can resolve in favor of one of the reduce
actions
— but which?

- yacc, jflex, et al. Pick reduce action for
production listed textually first in specification

From CSE401 Wi08 48

10/3/2008

