
10/3/2008

1

Bottom Up Parsing

Construct parse tree for input from leaves up

– reducing a string of tokens to single start symbol

(inverse of deriving a string of tokens from start

symbol)

“Shift-reduce” strategy:

– read (“shift”) tokens until seen r.h.s. of “correct”

production

– reduce handle to l.h.s. nonterminal, then continue

– done when all input read and reduced to start

nonterminal

A ::= bc.Dxyzabcdef

^

From CSE401 Wi08 28

LR(k)

• LR(k) parsing

– Left-to-right scan of input, Rightmost derivation

– k tokens of look ahead

• Strictly more general than LL(k)

– Gets to look at whole rhs of production before deciding what

to do, not just first k tokens of rhs

– can handle left recursion and common prefixes fine

– Still as efficient as any top-down or bottom-up parsing

method

• Complex to implement

– need automatic tools to construct parser from grammar

From CSE401 Wi08 29

LR Parsing Tables

Construct parsing tables implementing a FSA with a
stack
• rows: states of parser

• columns: token(s) of lookahead

• entries: action of parser
• shift, goto state X

• reduce production “X ::= RHS”

• accept

• error

Algorithm to construct FSA similar to algorithm to build
DFA from NFA
• each state represents set of possible places in parsing

LR(k) algorithm builds huge tables

From CSE401 Wi08 30

LALR-Look Ahead LR

LALR(k) algorithm has fewer states ==> smaller

tables

– less general than LR(k), but still good in practice

– size of tables acceptable in practice

• k == 1 in practice

– most parser generators, including yacc and

jflex, are LALR(1)

From CSE401 Wi08 31

10/3/2008

2

Global Plan for LR(0) Parsing

• Goal: Set up the tables for parsing an LR(0)

grammar

– Add S’ --> S$ to the grammar, i.e. solve the

problem for a new grammar with terminator

– Compute parser states by starting with state 1

containing added production, S’ --> .S$

– Form closures of states and shifting to complete

diagram

– Convert diagram to transition table for PDA

– Step through parse using table and stack

From CSE401 Wi08 32

LR(0) Parser Generation

Example grammar:
S’ ::= S $ // always add this production

S ::= beep | { L }

L ::= S | L ; S

• Key idea: simulate where input might be in grammar
as it reads tokens

• "Where input might be in grammar" captured by set
of items, which forms a state in the parser’s FSA
– LR(0) item: lhs ::= rhs production, with dot in rhs

somewhere marking what’s been read (shifted) so far

• LR(k) item: also add k tokens of lookahead to each item

– Initial item: S’ ::= . S $

From CSE401 Wi08 33

Closure

Initial state is closure of initial item

• closure: if dot before non-terminal, add all
productions for that non-terminal with dot at
the start
– "epsilon transitions"

Initial state (1):
S’::= . S $

S ::= . beep

S ::= . { L }

From CSE401 Wi08 34

State Transitions

Given set of items, compute new state(s) for each
symbol (terminal and non-terminal) after dot
– state transitions correspond to shift actions

New item derived from old item by shifting dot over
symbol
– do closure to compute new state Initial state (1):

S’ ::= . S $ S ::= . beep S ::= .{ L }

– State (2) reached on transition that shifts S:

S’ ::= S . $

– State (3) reached on transition that shifts beep:

S ::= beep .

– State (4) reached on transition that shifts {:

S ::= { . L }

L ::= . S

L ::= . L ; S

S ::= . beep

S ::= . { L }
From CSE401 Wi08 35

10/3/2008

3

Accepting Transitions

If state has S’ ::= $ item,

then add transition labeled$ to the accept

action

Example:

S’ ::= S . $

has transition labeled $ to accept action

From CSE401 Wi08 36

Reducing States

If state has lhs ::= rhs . item, then it has a

reduce lhs ::= rhs action

Example:

S ::= beep .

has reduce S ::= beep action

No label; this state always reduces this production

– what if other items in this state shift, or accept?

– what if other items in this state reduce differently?

From CSE401 Wi08 37

Rest of the States, Part 1
State (4): if shift beep, goto State (3)

State (4): if shift {, goto State (4)

State (4): if shift S, goto State (5)

State (4): if shift L, goto State (6)

State (5):
L ::= S .

State (6):
S ::= { L . }

L ::= L . ; S

State (6): if shift }, goto State (7)

State (6): if shift ;, goto State (8) From CSE401 Wi08 38

Rest of the States (Part 2)
State (7):

S ::= { L } .

State (8):
L ::= L ; . S

S ::= . beep

S ::= . { L }

State (8): if shift beep, goto State (3)

State (8): if shift {, goto State (4)

State (8): if shift S, goto State (9)

State (9):
L ::= L ; S . (whew)

From CSE401 Wi08 39

10/3/2008

4

LR(0) State Diagram

S’ --> .S$

S --> .{L}

S --> .beep

S --> beep.

S --> {.L}

L --> .S

L --> .L;S

S --> .{L}

S --> .beep

S’ --> S.$
L --> S.

L --> L;.S

S --> .{L}

S --> beep

S --> {L.}

L --> L.;S

S --> {L}.

L --> L;S.

S {

{

beep

{

S

beep

;

}
S

beep

L

1

2

3

4

5

6

7

8

9

S’::= S $

S ::= beep | { L }

L ::= S | L ; S

From CSE401 Wi08 40

Building Table of States & Transitions

Create a row for each state

Create a column for each terminal, non-terminal, and $

For every "state (i): if shift X goto state (j)" transition:

• if X is a terminal, put "shift, goto j" action in row i, column X

• if X is a non-terminal, put "goto j" action in row i, column X

For every "state (i): if $ accept" transition:

• put "accept" action in row i, column $

For every "state (i): lhs ::= rhs." action:

• put "reduce lhs ::= rhs" action in all columns of row i

From CSE401 Wi08 41

Table of This Grammar

State { } beep ; S L $

1 s,g4 s,g3 g2

2 a!

3 reduce S ::= beep

4 s,g4 s,g3 g5 g6

5 reduce L ::= S

6 s,g7 s,g8

7 reduce S ::= { L }

8 s,g4 s,g3 g9

9 reduce L ::= L ; S
From CSE401 Wi08 42

Example

1 { beep ; { beep } } $
1 { 4 beep ; { beep } } $
1 { 4 beep 3 ; { beep } } $
1 { 4 S 5 ; { beep } } $
1 { 4 L 6 ; { beep } } $
1 { 4 L 6 ; 8 { beep } } $
1 { 4 L 6 ; 8 { 4 beep } } $
1 { 4 L 6 ; 8 { 4 beep 3 } } $
1 { 4 L 6 ; 8 { 4 S 5 } } $
1 { 4 L 6 ; 8 { 4 L 6 } } $
1 { 4 L 6 ; 8 { 4 L 6 } 7 } $
1 { 4 L 6 ; 8 S 9 } $
1 { 4 L 6 } $
1 { 4 L 6 } 7 $
1 S 2 $
accept

St { } beep ; S L $

1 s,g4 s,g3 g2

2 a!

3 reduce S ::= beep

4 s,g4 s,g3 g5 g6

5 reduce L ::= S

6 s,g7 s,g8

7 reduce S ::= { L }

8 s,g4 s,g3 g9

9 reduce L ::= L ; S

S’::= S $

S ::= beep | { L }

L ::= S | L ; S

From CSE401 Wi08 43

10/3/2008

5

Problems In Shift-Reduce Parsing

Can write grammars that cannot be handled

with shift-reduce parsing

Shift/reduce conflict:

• state has both shift action(s) and reduce actions

Reduce/reduce conflict:

• state has more than one reduce action

From CSE401 Wi08 44

Shift/Reduce Conflicts
LR(0) example:

E ::= E + T | T

State: E ::= E . + T
E ::= T .

– Can shift +

– Can reduce E ::= T

LR(k) example:
S ::= if E then S |

if E then S else S | ...

State: S ::= if E then S .
S ::= if E then S . else S

– Can shift else

– Can reduce S ::= if E then S
From CSE401 Wi08 45

Avoiding Shift-Reduce Conflicts

Can rewrite grammar to remove conflict

– E.g. Matched Stmt vs. Unmatched Stmt

Can resolve in favor of shift action

– try to find longest r.h.s. before reducing

works well in practice

yacc, jflex, et al. do this

From CSE401 Wi08 46

Reduce/Reduce Conflicts

Example:
Stmt ::= Type id ; | LHS = Expr ; | ...

...
LHS ::= id | LHS [Expr] | ...

...
Type ::= id | Type [] | ...

State: Type ::= id .

LHS ::= id .

Can reduce Type ::= id

Can reduce LHS ::= id
From CSE401 Wi08 47

10/3/2008

6

Avoid Reduce/Reduce Conflicts

Can rewrite grammar to remove conflict
– can be hard

• e.g. C/C++ declaration vs. expression problem

• e.g. MiniJava array declaration vs. array store problem

Can resolve in favor of one of the reduce
actions
– but which?

– yacc, jflex, et al. Pick reduce action for
production listed textually first in specification

From CSE401 Wi08 48

