
CSE	401	–	Compilers	

LR	Parser	Construc9on	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 E-1

Administrivia	
•  Scanners	due	tomorrow,	11	pm	–	how’s	it	going?		Ques9ons?	

–  Be	sure	to	implement	both	kinds	of	comments	
•  Project	discussion	board,	email:	Wrong:	“I	am	confused/have	a	ques9on”			

Right:	“we	are	confused/have	a	ques9on”		J	

•  Schedule:	
–  Today	and	in	sec9ons	tomorrow:	LR	parsing	and	LR	parser	construc9on	
–  HW2	(LR	parsers)	out	Friday,	due	Thursday	next	week	
–  Next	part	of	the	project,	Parser	+	AST	visitors,	out	by	Monday,	due	a	week	

from	Thursday	
•  More	details/examples	in	lecture	and	sec9ons	next	week	

–  Assignment/project/exam	dates	on	schedule	will	stay	as-is	

•  HW1	sample	solu9ons:	pick	up	a	copy	at	end	of	class	today	
•  HW1	grading:	“regexp	unrolling”?		Where	did	that	come	from??	

–  “Very	clever,	-1”	
–  “Premature	op9miza9on	is	the	root	of	all	evil”	–	Knuth	

UW CSE 401 Winter 2017 E-2

Agenda	

•  LR(0)	state	construc9on	
•  FIRST,	FOLLOW,	and	nullable	
•  Varia9ons:	SLR,	LR(1),	LALR	

UW CSE 401 Winter 2017 E-3

LR	State	Machine	

•  Idea:	Build	a	DFA	that	recognizes	handles		
– Language	generated	by	a	CFG	is	generally	not	
regular,	but	

– Language	of	handles	for	a	CFG	is	regular	
•  So	a	DFA	can	be	used	to	recognize	handles	

– LR	Parser	reduces	when	DFA	accepts	a	handle	

UW CSE 401 Winter 2017 E-4

Prefixes,	Handles,	&c	(review)	

•  If	S	is	the	start	symbol	of	a	grammar	G,	
–  If	S	=>*	α	then	α	is	a	senten'al	form	of	G	
–  γ	is	a	viable	prefix	of	G	if	there	is	some	deriva9on		
S	=>*rm	αAw	=>*rm	αβw	and	γ	is	a	prefix	of	αβ.	

–  The	occurrence	of	β	in	αβw	is	a	handle	of	αβw	
•  An	item	is	a	marked	produc9on	(a	.	at	some	posi9on	
in	the	right	hand	side)	
–  [A	::=	.	X	Y]			[A	::=	X	.	Y]			[A	::=	X	Y	.]		

UW CSE 401 Winter 2017 E-5

Building	the	LR(0)	States	

•  Example	grammar	
	 	S’	::=	S	$	
	 	S	::=	(L)	
	 	S	::=	x	
	 	L	::=	S	
	 	L	::=	L	,	S	
– We	add	a	produc9on	S’	with	the	original	start	symbol	
followed	by	end	of	file	($)	
•  We	accept	if	we	reach	the	end	of	this	produc9on	

–  Ques9on:	What	language	does	this	grammar	generate?	

UW CSE 401 Winter 2017 E-6

Start	of	LR	Parse	

•  Ini9ally	
– Stack	is	empty	
–  Input	is	the	right	hand	side	of	S’,	i.e.,	S	$	
–  Ini9al	configura9on	is	[S’	::=	.	S	$]	
– But,	since	posi9on	is	just	before	S,	we	are	also	just	
before	anything	that	can	be	derived	from	S	

UW CSE 401 Winter 2017 E-7

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

Ini9al	state	

•  A	state	is	just	a	set	of	items	
–  Start:	an	ini9al	set	of	items	
–  Comple9on	(or	closure):	addi9onal	produc9ons	whose	lel	
hand	side	appears	to	the	right	of	the	dot	in	some	item	
already	in	the	state		

UW CSE 401 Winter 2017 E-8

S’ ::= . S $
S ::= . (L)
S ::= . x

start

completion

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

Shil	Ac9ons	(1)	

•  To	shil	past	the	x,	add	a	new	state	with	appropriate	item(s),	
including	their	closure	
–  In	this	case,	a	single	item;	the	closure	adds	nothing	
–  This	state	will	lead	to	a	reduc9on	since	no	further	shil	is	possible	

UW CSE 401 Winter 2017 E-9

S’ ::= . S $
S ::= . (L)
S ::= . x

S ::= x . x

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

Shil	Ac9ons	(2)	

•  If	we	shil	past	the	(,	we	are	at	the	beginning	of	L	
•  The	closure	adds	all	produc9ons	that	start	with	L,	which	also	

requires	adding	all	produc9ons	star9ng	with	S	

UW CSE 401 Winter 2017 E-10

S’ ::= . S $
S ::= . (L)
S ::= . x

S ::= (. L)
L ::= . L , S
L ::= . S
S ::= . (L)
S ::= . x

(

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

Goto	Ac9ons	

•  Once	we	reduce	S,	we’ll	pop	the	rhs	from	the	
stack	exposing	the	first	state.		Add	a	goto	
transi9on	on	S		for	this.	

UW CSE 401 Winter 2017 E-11

S’ ::= . S $
S ::= . (L)
S ::= . x

S’ ::= S . $
S

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

Basic	Opera9ons	

•  Closure	(S)	
– Adds	all	items	implied	by	items	already	in	S	

•  Goto	(I,	X)	
–  I	is	a	set	of	items	
– X	is	a	grammar	symbol	(terminal	or	non-terminal)	
– Goto	moves	the	dot	past	the	symbol	X		in	all	
appropriate	items	in	set	I	

UW CSE 401 Winter 2017 E-12

Closure	Algorithm	

•  Closure	(S)	=	
	repeat	
	 		for	any	item	[A	::=	α	.	B	β]	in	S	
	 					for	all	produc9ons	B	::=	γ	
	 	 	add	[B	::=	.	γ]	to	S	
	un9l	S		does	not	change	
	return	S		

•  Classic	example	of	a	fixed-point	algorithm	

UW CSE 401 Winter 2017 E-13

Goto	Algorithm	

•  Goto	(I,	X)	=	
	 	set	new		to	the	empty	set 		
	 	for	each	item	[A	::=	α	.	X		β]	in	I	
	 	 	add	[A	::=	α	X	.		β]	to	new	
	 	return	Closure	(new)	

•  This	may	create	a	new	state,	or	may	return	an	
exis9ng	one	

UW CSE 401 Winter 2017 E-14

LR(0)	Construc9on	

•  First,	augment	the	grammar	with	an	extra	
start	produc9on	S’	::=	S	$	

•  Let	T		be	the	set	of	states	
•  Let	E		be	the	set	of	edges	
•  Ini9alize	T		to	Closure	([S’	::=	.	S	$])	
•  Ini9alize	E		to	empty	

UW CSE 401 Winter 2017 E-15

LR(0)	Construc9on	Algorithm	
repeat	
	for	each	state	I	in	T		
	 	for	each	item	[A	::=	α	.	X		β]	in	I	
	 				Let	new	be	Goto(I,	X)	
	 				Add	new	to	T	if	not	present	
	 				Add	I	⟶	new		to	E	if	not	present	

un9l	E	and	T	do	not	change	in	this	itera9on	
	

•  Footnote:	For	symbol	$,	we	don’t	compute	goto(I,	$);	instead,	we	make	
this	an	accept	ac9on.	

UW CSE 401 Winter 2017 E-16

X

Example:	States	for	

UW CSE 401 Winter 2017 E-17

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

Building	the	Parse	Tables	(1)	

•  For	each	edge	I	⟶	J			
–  if	X	is	a	terminal,	put	sj	in	column	X,	row	I	of	the	
ac9on	table	(shil	to	state	j)	

–  If	X	is	a	non-terminal,	put	gj	in	column	X,	row	I	of	
the	goto	table	

		

UW CSE 401 Winter 2017 E-18

x

Building	the	Parse	Tables	(2)	

•  For	each	state	I	containing	an	item		
[S’		::=	S	.	$],	put	accept	in	column	$	of	row	I			

•  Finally,	for	any	state	containing		
[A	::=	γ	.]	put	ac9on	rn	(reduce)	in	every	
column	of	row	I	in	the	table,	where	n	is	the	
produc'on	number	

UW CSE 401 Winter 2017 E-19

Example:	Tables	for	

UW CSE 401 Winter 2017 E-20

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

Where	Do	We	Stand?	

•  We	have	built	the	LR(0)	state	machine	and	
parser	tables	
– No	lookahead	yet	
– Different	varia9ons	of	LR	parsers	add	lookahead	
informa9on,	but	basic	idea	of	states,	closures,	and	
edges	remains	the	same	

UW CSE 401 Winter 2017 E-21

A	Grammar	that	is	not	LR(0)	

•  Build	the	state	machine	and	parse	tables	for	a	
simple	expression	grammar	
	S	::=	E	$	
	E	::=	T	+	E	
	E	::=	T	
	T	::=	x	

UW CSE 401 Winter 2017 E-22

LR(0)	Parser	for	

x + $ E T

1 s5 g2 g3

2 acc

3 r2 s4,r2 r2

4 s5 g6 g3

5 r3 r3 r3

6 r1 r1 r1

UW CSE 401 Winter 2017 E-23

0. S ::= E $
1. E ::= T + E
2. E ::= T
3. T ::= x

S ::= . E $
E ::= . T + E
E ::= . T
T ::= . x

T ::= x .

S ::= E . $

E ::= T . + E
E ::= T .

E ::= T + . E
E ::= . T + E
E ::= . T
E ::= . x

E ::= T + E .

1 2

3

4

5

6

E

T

+ T
x

E

n  State 3 is has two possible
actions on +

n  shift 4, or reduce 2

n  ∴ Grammar is not LR(0)

How	can	we	solve	conflicts	like	this?	

•  Idea:	look	at	the	next	symbol	aler	the	handle	before	
deciding	whether	to	reduce	

•  Easiest:	SLR	–	Simple	LR.		Reduce	only	if	next	input	
terminal	symbol	could	follow	resul9ng	nonterminal	

•  More	complex:	LR	and	LALR.		Store	lookahead	
symbols	in	items	to	keep	track	of	what	can	follow	a	
par'cular	instance	of	a	reduc9on	
–  LALR	used	by	YACC/Bison/CUP;	we	won’t	examine	in	detail	

UW CSE 401 Winter 2017 E-24

SLR	Parsers	

•  Idea:	Use	informa9on	about	what	can	follow	a	non-
terminal	to	decide	if	we	should	perform	a	reduc9on;	
don’t	reduce	if	the	next	input	symbol	can’t	follow	the	
resul9ng	non-terminal	

•  We	need	to	be	able	to	compute	FOLLOW(A)	–	the	set	
of	symbols	that	can	follow	A	in	any	possible	
deriva9on	
–  i.e.,	t	is	in	FOLLOW(A)	if	any	deriva9on	contains	At	
–  To	compute	this,	we	need	to	compute	FIRST(γ)	for	strings	γ	
that	can	follow	A	

UW CSE 401 Winter 2017 E-25

Calcula9ng	FIRST(γ)	

•  Sounds	easy…	If	γ	=	X	Y	Z	,	then	FIRST(γ)	is	
FIRST(X),	right?	

–  But	what	if	we	have	the	rule	X	::=	ε?	
–  In	that	case,	FIRST(γ)	includes	anything	that	can	follow	
X,	i.e.	FOLLOW(X),	which	includes	FIRST(Y)	and,	if	Y	
can	derive	ε,	FIRST(Z),	and	if	Z	can	derive	ε,	…	

–  So	compu9ng	FIRST	and	FOLLOW	involves	knowing	
FIRST	and	FOLLOW	for	other	symbols,	as	well	as	which	
ones	can	derive	ε.	

UW CSE 401 Winter 2017 E-26

FIRST,	FOLLOW,	and	nullable	

•  nullable(X)	is	true	if	X	can	derive	the	empty	string	
•  Given	a	string	γ	of	terminals	and	non-terminals,	
FIRST(γ)	is	the	set	of	terminals	that	can	begin	strings	
derived	from	γ	
–  For	SLR	we	only	need	this	for	single	terminal	or	non-
terminal	symbols,	not	arbitrary	strings	γ	

•  FOLLOW(X)	is	the	set	of	terminals	that	can	
immediately	follow	X	in	some	deriva9on	

•  All	three	of	these	are	computed	together	

UW CSE 401 Winter 2017 E-27

Compu9ng	FIRST,	FOLLOW,	and	
nullable	(1)	
•  Ini9aliza9on	

	set	FIRST	and	FOLLOW	to	be	empty	sets	
	set	nullable	to	false	for	all	non-terminals	
	set	FIRST[a]	to	a	for	all	terminal	symbols	a	

•  Repeatedly	apply	four	simple	observa9ons	to	
update	these	sets	
– Stop	when	there	are	no	further	changes	
– Another	fixed-point	algorithm	

UW CSE 401 Winter 2017 E-28

Compu9ng	FIRST,	FOLLOW,	and	
nullable	(2)	

repeat	
	for	each	produc9on	X	:=	Y1	Y2	…	Yk	
	 	if	Y1	…	Yk	are	all	nullable	(or	if	k	=	0)	
	 				set	nullable[X]	=	true	
	 	for	each	i		from	1	to	k	and	each	j		from	i	+1	to	k	
	 				if	Y1	…	Yi-1	are	all	nullable	(or	if	i	=	1)	
	 	 	add	FIRST[Yi]	to	FIRST[X]	
	 				if	Yi+1	…	Yk	are	all	nullable	(or	if	i	=	k)	
	 	 	add	FOLLOW[X]	to	FOLLOW[Yi]	
	 				if	Yi+1	…	Yj-1	are	all	nullable	(or	if	i+1=j)	
	 	 	add	FIRST[Yj]	to	FOLLOW[Yi]	

Un9l	FIRST,	FOLLOW,	and	nullable	do	not	change	

UW CSE 401 Winter 2017 E-29

Example	

•  Grammar	
Z	::=	d	
Z	::=	X	Y	Z	
Y	::=	ε	
Y	::=	c	
X	::=	Y	
X	::=	a	

			nullable 			FIRST 					FOLLOW	
	
X	
	
	
Y	
	
	
Z	

UW CSE 401 Winter 2017 E-30

LR(0)	Reduce	Ac9ons	(review)	

•  In	a	LR(0)	parser,	if	a	state	contains	a	
reduc9on,	it	is	uncondi9onal	regardless	of	the	
next	input	symbol	

•  Algorithm:	
		Ini9alize	R		to	empty	
		for	each	state	I		in	T		
					for	each	item	[A	::=	α	.]	in	I		
		 	add	(I,	A	::=	α)	to	R		

UW CSE 401 Winter 2017 E-31

SLR	Construc9on	

•  This	is	iden9cal	to	LR(0)	–	states,	etc.,	except	for	the	
calcula9on	of	reduce	ac9ons	

•  Algorithm:	
	 	Ini9alize	R		to	empty	
	 	for	each	state	I		in	T		
	 				for	each	item	[A	::=	α	.]	in	I	
	 							for	each	terminal	a	in	FOLLOW(A)		
	 	 	add	(I,	a,	A	::=	α)	to	R		
–  i.e.,	reduce	α	to	A	in	state	I		only	on	lookahead	a	

UW CSE 401 Winter 2017 E-32

SLR	Parser	for	

x + $ E T

1 s5 g2 g3

2 acc

3 r2 s4,r2 r2

4 s5 g6 g3

5 r3 r3 r3

6 r1 r1 r1

UW CSE 401 Winter 2017 E-33

0. S ::= E $
1. E ::= T + E
2. E ::= T
3. T ::= x

S ::= . E $
E ::= . T + E
E ::= . T
T ::= . x

T ::= x .

S ::= E . $

E ::= T . + E
E ::= T .

E ::= T + . E
E ::= . T + E
E ::= . T
E ::= . x

E ::= T + E .

1 2

3

4

5

6

E

T

+ T
x

E

On	To	LR(1)	

•  Many	prac9cal	grammars	are	SLR	
•  LR(1)	is	more	powerful	yet	
•  Similar	construc9on,	but	no9on	of	an	item	is	
more	complex,	incorpora9ng	lookahead	
informa9on	

UW CSE 401 Winter 2017 E-34

LR(1)	Items	

•  An	LR(1)	item	[A	::=	α	.	β,	a]	is	
– A	grammar	produc9on	(A	::=	αβ)	
– A	right	hand	side	posi9on	(the	dot)	
– A	lookahead	symbol	(a)	

•  Idea:	This	item	indicates	that	α	is	the	top	of	
the	stack	and	the	next	input	is	derivable	from	
βa.	

•  Full	construc9on:	see	the	book	

UW CSE 401 Winter 2017 E-35

LR(1)	Tradeoffs	

•  LR(1)	
– Pro:	extremely	precise;	largest	set	of	grammars	
– Con:	poten9ally	very	large	parse	tables	with	many	
states	

UW CSE 401 Winter 2017 E-36

LALR(1)	

•  Varia9on	of	LR(1),	but	merge	any	two	states	
that	differ	only	in	lookahead	
– Example:	these	two	would	be	merged	

	[A	::=	x	.	,	a]	
	[A	::=	x	.	,	b]	

UW CSE 401 Winter 2017 E-37

LALR(1)	vs	LR(1)	

•  LALR(1)	tables	can	have	many	fewer	states	than	LR(1)	
–  Somewhat	surprising	result:	will	actually	have	same	
number	of	states	as	SLR	parsers,	even	though	LALR(1)	is	
more	powerful	

–  Aler	the	merge	step,	acts	like	SLR	parser	with	“smarter”	
FOLLOW	sets	(may	be	specific	to	par9cular	handles)	

•  LALR(1)	may	have	reduce	conflicts	where	LR(1)	would	
not	(but	in	prac9ce	this	doesn’t	happen	olen)	

•  Most	prac9cal	bouom-up	parser	tools	are	LALR(1)	
(e.g.,	yacc,	bison,	CUP,	…)	

UW CSE 401 Winter 2017 E-38

Language	Heirarchies	

UW CSE 401 Winter 2017 E-39

ambiguous
grammars

unambiguous grammars

LR(k)

LR(1)

LALR(1)

SLR

LR(0)
LL(0)

LL(1)

LL(k)

Coming	Aurac9ons	

Lecture	
•  LL(k)	Parsing	–	Top-Down	
•  Recursive	Descent	Parsers	
– What	you	can	do	if	you	want	a	parser	in	a	hurry	

Sec9ons	
•  AST	construc9on	–	what	do	do	while	you	parse!	
•  Visitor	Pauern	–	how	to	traverse	ASTs	for	further	
processing	(type	checking,	code	genera9on,	…)	

UW CSE 401 Winter 2017 E-40

