
CSE	401	–	Compilers	

SSA	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 U-1

Agenda	

•  Overview	of	SSA	IR	
– ConstrucEng	SSA	graphs	
– Sample	of	SSA-based	opEmizaEons	
– ConverEng	back	from	SSA	form	

•  Sources:	Appel	ch.	19,	also	an	extended	discussion	in	Cooper-Torczon	sec.	
9.3,	Mike	Ringenburg’s	CSE	401	slides	

UW CSE 401 Winter 2017 U-2

Def-Use	(DU)	Chains	

•  Common	dataflow	analysis	problem:	Find	all	sites	
where	a	variable	is	used,	or	find	the	definiEon	
site	of	a	variable	used	in	an	expression	

•  TradiEonal	soluEon:	def-use	chains	–	addiEonal	
data	structure	on	top	of	the	dataflow	graph	
–  Link	each	statement	defining	a	variable	to	all	
statements	that	use	it	

–  Link	each	use	of	a	variable	to	its	definiEon	

UW CSE 401 Winter 2017 U-3

DU-Chain	Drawbacks	

•  Expensive:	if	a	typical	variable	has	N	uses	and	
M	definiEons,	the	total	cost	per-variable	is		
O(N	*	M)	
– Would	be	nice	if	cost	were	proporEonal	to	the	
size	of	the	program	

•  Unrelated	uses	of	the	same	variable	are	mixed	
together	
–  	Complicates	analysis	

UW CSE 401 Winter 2017 U-4

SSA:	StaEc	Single	Assignment	

•  IR	where	each	variable	has	only	one	definiEon	
in	the	program	text	
– This	is	a	single	sta-c	definiEon,	but	that	definiEon	
can	be	in	a	loop	that	is	executed	dynamically	
many	Emes	

•  Makes	many	analyses	(and	associated	
opEmizaEons)	more	efficient	

•  Complementary	to	CFG/DFG	–	beaer	for	some	
things,	but	cannot	do	everything	

UW CSE 401 Winter 2017 U-5

SSA	in	Basic	Blocks	

•  Original	
a	:=	x	+	y	
b	:=	a	–	1	
a	:=	y	+	b	
b	:=	x	*	4	
a	:=	a	+	b	

•  SSA	
a1	:=	x	+	y	
b1	:=	a1	–	1	
a2	:=	y	+	b1	
b2	:=	x	*	4	
a3	:=	a2	+	b2	

UW CSE 401 Winter 2017 U-6

Idea: for each original variable v, create a new variable
vn at the nth definition of the original v. Subsequent
uses of v use vn until the next definition point.

Merge	Points	

•  The	issue	is	how	to	handle	merge	points	

		

UW CSE 401 Winter 2017 U-7

if (…)
 a = x;
else
 a = y;
b = a;

if (…)
 a1 = x;
else
 a2 = y;
b1 = ??;

Merge	Points	

•  The	issue	is	how	to	handle	merge	points	

•  SoluEon:	introduce	a	Φ-funcEon	
a3	:=	Φ(a1,	a2)	

•  Meaning:	a3	is	assigned	either	a1or	a2	depending	on	
which	control	path	is	used	to	reach	the	Φ-funcEon	

UW CSE 401 Winter 2017 U-8

if (…)
 a = x;
else
 a = y;
b = a;

if (…)
 a1 = x;
else
 a2 = y;
a3 =Φ(a1, a2);
b1 = a3;

Another	Example	

UW CSE 401 Winter 2017 U-9

b := M[x]
a := 0

if b < 4

a := b

c := a + b

Original

b1 := M[x]
a1 := 0

if b1 < 4

a2 := b1

a3 := Φ(a1, a2)
c1 := a3 + b1

SSA

How	Does	Φ	“Know”	What	to	Pick?	

•  It	doesn’t	
•  Φ-funcEons	don’t	actually	exist	at	runEme	
– When	we’re	done	using	the	SSA	IR,	we	translate	
back	out	of	SSA	form,	removing	all	Φ-funcEons	
•  Basically	by	adding	code	to	copy	all	SSA	xi	values	to	(the	
single,	non-SSA)	x		

– For	analysis,	all	we	typically	need	to	know	is	the	
connecEon	of	uses	to	definiEons	–	no	need	to	
“execute”	anything	

UW CSE 401 Winter 2017 U-10

Example	With	a	Loop	

UW CSE 401 Winter 2017 U-11

a := 0

b := a + 1
c := c + b
a := b * 2
if a < N

return c

Original
a1 := 0

a3 := Φ(a1, a2)
b1 := Φ(b0, b2)
c2 := Φ(c0, c1)
b2 := a3 + 1
c1 := c2 + b2
a2 := b2 * 2
if a2 < N

return c1

SSA
Notes:
• Loop-back edges are
also merge points, so
require Φ-functions
• a0, b0, c0 are initial
values of a, b, c on
block entry
• b1 is dead – can
delete later
• c is live on entry –
either input parameter
or uninitialized

ConverEng	To	SSA	Form	

•  Basic	idea	
– First,	add	Φ-funcEons	
– Then,	rename	all	definiEons	and	uses	of	variables	
by	adding	subscripts	

	

UW CSE 401 Winter 2017 U-12

InserEng	Φ-FuncEons	

•  Could	simply	add	Φ-funcEons	for	every	
variable	at	every	join	point(!)	

•  But	
– Wastes	way	too	much	space	and	Eme	
– Not	needed	

UW CSE 401 Winter 2017 U-13

Path-convergence	criterion	

•  Insert	a	Φ-funcEon	for	variable	a	at	point	z	
when:	
– There	are	blocks	x	and	y,	both	containing	
definiEons	of	a,	and	x	≠	y	

– There	are	nonempty	paths	from	x	to	z	and	from	y	
to	z	

– These	paths	have	no	common	nodes	other	than	z	

UW CSE 401 Winter 2017 U-14

Details	

•  The	start	node	of	the	flow	graph	is	considered	
to	define	every	variable	(even	if	“undefined”)	

•  Each	Φ-funcEon	itself	defines	a	variable,	
which	may	create	the	need	for	a	new	Φ-
funcEon	
– So	we	need	to	keep	adding	Φ-funcEons	unEl	
things	converge	

•  How	can	we	do	this	efficiently?			
Use	a	new	concept:	dominance	fronEers	

UW CSE 401 Winter 2017 U-15

Dominators	
•  DefiniEon:	a	block	x	dominates	a	block	y	iff	every	
path	from	the	entry	of	the	control-flow	graph	to	
y	includes	x	

•  So,	by	definiEon,	x	dominates	x	
•  We	can	associate	a	Dom(inator)	set	with	each	
CFG	node	x	–	set	of	all	blocks	dominated	by	x	

	|	Dom(x)	|	≥	1	
•  ProperEes:	
–  TransiEve:	if	a	dom	b	and	b	dom	c,	then	a	dom	c	
–  There	are	no	cycles,	thus	can	represent	the	dominator	
relaEonship	as	a	tree	

UW CSE 401 Winter 2017 U-16

Example	

UW CSE 401 Winter 2017 U-17

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

Dominators	and	SSA	

•  One	property	of	SSA	is	that	definiEons	
dominate	uses;	more	specifically:	
–  If	x	:=	Φ(…,xi,…)	is	in	block	b,	then	the	definiEon	of	
xi	dominates	the	ith	predecessor	of	b	

–  If	x	is	used	in	a	non-Φ	statement	in	block	b,	then	
the	definiEon	of	x	dominates	block	b	

UW CSE 401 Winter 2017 U-18

Dominance	FronEer	(1)	

•  To	get	a	pracEcal	algorithm	for	placing	Φ-
funcEons,	we	need	to	avoid	looking	at	all	
combinaEons	of	nodes	leading	from	x	to	y	

•  Instead,	use	the	dominator	tree	in	the	flow	
graph	

UW CSE 401 Winter 2017 U-19

Dominance	FronEer	(2)	

•  DefiniEons	
–  x	strictly	dominates	y	if	x	dominates	y	and	x	≠	y	
–  The	dominance	fron-er	of	a	node	x	is	the	set	of	all	
nodes	w	such	that	x	dominates	a	predecessor	of	w,	
but	x	does	not	strictly	dominate	w	
•  This	means	that	x	can	be	in	it’s	own	dominance	fronEer!		
That	can	happen	if	there	is	a	back	edge	to	x	(i.e.,	x	is	the	
head	of	a	loop)	

•  EssenEally,	the	dominance	fronEer	is	the	border	
between	dominated	and	undominated	nodes	

UW CSE 401 Winter 2017 U-20

Example	

UW CSE 401 Winter 2017 U-21

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example	

UW CSE 401 Winter 2017 U-22

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example	

UW CSE 401 Winter 2017 U-23

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example	

UW CSE 401 Winter 2017 U-24

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example	

UW CSE 401 Winter 2017 U-25

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example	

UW CSE 401 Winter 2017 U-26

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example	

UW CSE 401 Winter 2017 U-27

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example	

UW CSE 401 Winter 2017 U-28

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example	

UW CSE 401 Winter 2017 U-29

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example	

UW CSE 401 Winter 2017 U-30

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example	

UW CSE 401 Winter 2017 U-31

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Dominance	FronEer	Criterion	for	
Placing	Φ-FuncEons	
•  If	a	node	x	contains	the	definiEon	of	variable	a,	then	
every	node	in	the	dominance	fronEer	of	x	needs	a	Φ-
funcEon	for	a	
–  Idea:	Everything	dominated	by	x	will	see	x’s	definiEon	of	a.		
The	dominance	fronEer	represents	the	first	nodes	we	
could	have	reached	via	an	alternaEve	path,	which	will	have	
an	alternate	reaching	definiEon	(recall	we	say	the	entry	
node	defines	everything)	
•  Why	is	this	right	for	loops?		Hint:	strict	dominance…	

–  Since	the	Φ-funcEon	itself	is	a	definiEon,	this	placement	
rule	needs	to	be	iterated	unEl	it	reaches	a	fixed-point	

•  Theorem:	this	algorithm	places	exactly	the	same	set	of	
Φ-funcEons	as	the	path	criterion	given	previously	

UW CSE 401 Winter 2017 U-32

Placing	Φ-FuncEons:	Details	

•  See	the	book	for	the	full	construcEon,	but	the	
basic	steps	are:	
1.  Compute	the	dominance	fronEers	for	each	node	

in	the	flowgraph	
2.  Insert	just	enough	Φ-funcEons	to	saEsfy	the	

criterion.		Use	a	worklist	algorithm	to	avoid	
reexamining	nodes	unnecessarily	

3.  Walk	the	dominator	tree	and	rename	the	
different	definiEons	of	each	variable	a	to	be	a1,	
a2,	a3,	…	

UW CSE 401 Winter 2017 U-33

SSA	OpEmizaEons	

•  Why	go	to	the	trouble	of	translaEng	to	SSA?			
•  The	advantage	of	SSA	is	that	it	makes	many	
opEmizaEons	and	analyses	simpler	and	more	
efficient	
– We’ll	give	a	couple	of	examples	

•  But	first,	what	do	we	know?		(i.e.,	what	
informaEon	is	kept	in	the	SSA	graph?)	

UW CSE 401 Winter 2017 U-34

SSA	Data	Structures	

•  Statement:	links	to	containing	block,	next	and	
previous	statements,	variables	defined,	
variables	used.			

•  Variable:	link	to	its	(single)	definiEon	
statement	and	(possibly	mulEple)	use	sites	

•  Block:	List	of	contained	statements,	ordered	
list	of	predecessors,	successor(s)	

UW CSE 401 Winter 2017 U-35

Dead-Code	EliminaEon	

•  A	variable	is	live	iff	its	list	of	uses	is	not		
empty(!)	
– That’s	it!		Nothing	further	to	compute	

•  Algorithm	to	delete	dead	code:	
while	there	is	some	variable	v	with	no	uses	

	if	the	statement	that	defines	v	has	no	
						other	side	effects,	then	delete	it	

– Need	to	remove	this	statement	from	the	list	of	
uses	for	its	operand	variables	–	which	may	cause	
those	variables	to	become	dead	

UW CSE 401 Winter 2017 U-36

Sparse	Simple	Constant	PropagaEon	

•  If	c	is	a	constant	in	v	:=	c,	any	use	of	v	can	be	
replaced	by	c	
– Then	update	every	use	of	v	to	use	constant	c	

•  If	the	ci’s	in	v	:=	Φ(c1,	c2,	…,	cn)	are	all	the	same	
constant	c,	we	can	replace	this	with	v	:=	c	

•  Can	also	incorporate	copy	propagaEon,	
constant	folding,	and	others	in	the	same	
worklist	algorithm	

UW CSE 401 Winter 2017 U-37

Simple	Constant	PropagaEon	

W	:=	list	of	all	statements	in	SSA	program	
while	W	is	not	empty	
	remove	some	statement	S	from	W	
	if	S	is	v:=Φ(c,	c,	…,	c),	replace	S	with	v:=c	
	if	S	is	v:=c	
	 			delete	S	from	the	program	
	 			for	each	statement	T	that	uses	v	
	 	 	subsEtute	c	for	v	in	T	
	 	 	add	T	to	W	

UW CSE 401 Winter 2017 U-38

ConverEng	Back	from	SSA	

•  Unfortunately,	real	machines	do	not	include	a	
Φ	instrucEon	

•  So	arer	analysis,	opEmizaEon,	and	
transformaEon,	need	to	convert	back	to	a	“Φ-
less”	form	for	execuEon	

UW CSE 401 Winter 2017 U-39

TranslaEng	Φ-funcEons	

•  The	meaning	of	x	:=	Φ(x1,	x2,	…,	xn)	is	“set	x	:=	
x1	if	arriving	on	edge	1,	set	x:=	x2	if	arriving	on	
edge	2,	etc.”	

•  So,	for	each	i,	insert	x	:=	xi	at	the	end	of	
predecessor	block	i	

•  Rely	on	copy	propagaEon	and	coalescing	in	
register	allocaEon	to	eliminate	redundant	
moves	

UW CSE 401 Winter 2017 U-40

SSA	Wrapup	

•  There	are	many	details	needed	to	fully	and	
efficiently	implement	SSA,	but	these	are	the	main	
ideas	

•  Not	a	silver	bullet	–	some	opEmizaEons	sEll	need	
non-SSA	forms	–	but	it	allows	efficient	
implementaEon	of	many	opEmizaEons	

•  SSA	is	used	in	most	modern	opEmizing	compilers	
(llvm	is	based	on	it)	and	has	been	retrofiaed	into	
many	older	ones	(gcc	is	a	well-known	example)	

UW CSE 401 Winter 2017 U-41

