CSE 401/M501 — Compilers

Survey of Code Optimizations

Hal Perkins
Autumn 2018

Administrivia

* Code gen due a week from Wednesday
— How’s it look?

— Everyone got “hello world” (system.out.println(17);)
working?

 Should we have a written hw4 on dataflow,
optimization, SSA?

 M501: details coming later today (we hope) then
would like to have short meetings with groups
before Thanksgiving break for planning

UW CSE 401/M501 Autumn 2018 N-2

Agenda

e Survey some code “optimizations”
(improvements)

— Get a feel for what’s possible
* Some organizing concepts

— Basic blocks
— Control-flow and dataflow graph
— Analysis vs. transformation

UW CSE 401/M501 Autumn 2018

N-3

Optimizations

* Use added passes to identify inefficiencies in intermediate
or target code

* Replace with equivalent but better sequences
— Equivalent = “has same externally visible behavior”

— Better can mean many things: faster, smaller, reduce energy
consumption, etc.

e Target-independent optimizations best done on IL code
— Remove redundant computations, eliminate dead code, etc.

* Target-dependent optimizations best done on target code
— Tailor code sequences to particular machines

* “Optimize” overly optimistic: “usually improve” is generally
more accurate

— And “clever” programmers can outwit youl!

UW CSE 401/M501 Autumn 2018 N-4

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = t1 * 4;

t3 = fp + t2;

td = *(t3 + aoffset); // al[il]

ts = 2;

té = t5 * 4;

t7 = fp + t6;

t8 = *(t7 + boffset); // b[2]

t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ..
tl0 = *(fp + xoffset); // x

tll = 5;
tl2 = t10 - t11;
tl3 = *(fp + ioffset); // i

tl4d = t13 * 4;
tl5 = fp + t1l4;
* (tl5 + coffset) = tl2; // c[i]

UW CSE 401/M501 Autumn 2018

An example

x = a[i] + b[2];
c[i] = x - 5;

Strength reduction: shift
often cheaper than multiply

tl = *(fp + ioffse
t2

t3 = fp + t2;

t4d = *(t3 + aoffse
ts = 2;

t6 =

t7 = fp + t6;

t8 = *(t7 + boffse

t9 = t4 + t8;
*(fp + xoffset) =

t)y; // 1

tl < 2; // was tl * 4

t)y; // alil

th < 2; // was t5 * 4

t); // bl2]

t9; // x = ..

tl0 = *(fp + xoffset); // x

tll = 5;
tl12 = t10 - t11;
t13 =

tld = t13 << 2; //
tl5 = fp + t1l4;
*(tl5 + coffset) =

UW CSE 401/M501 Autumn 2018

*(fp + ioffset); // i

was tl1l3 * 4

t12; // cli]

An example

x = a[i] + b[2];
c[i] = x - 5;

Constant propagation:
replace variables with
known constant values

tl =
t2
t3
t4
t5
té6
t7
t8
t9 =

*(fp

t10 =
t1l1l
tl2
t13
t1l4 =
t1l5 =
*(tl5

*(fp + ioffset); // i
tl << 2;
fp + t2;
*(t3 + aoffset); // a[i]
2;
2 << 2; // was tb5 << 2
fp + t6;
*(t7 + boffset); // b[2]
td4 + t8;
+ xoffset) = t9; // x = ..
*(fp + xoffset); // x
5;
tl0 - 5; // was t1l0 - tl1
*(fp + ioffset); // i
tl3 << 2;
fp + t14;
+ coffset) = tl1l2; // c[i]

UW CSE 401/M501 Autumn 2018

An example

x = a[i] + b[2];
c[i] = x - 5;

Dead store (or dead
assignment) elimination:
remove assignments to
provably unused variables

tl = *(fp + ioffset); // i
t2 tl << 2;

t3 fp + t2;

td = *(t3 + aoffset); // al[il]
m———

t6 = 2 << 2;
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]

t9 = t4 + t8;

*(fp + xoffset) = t9; // x = ..

t10 *(fp + xoffset); // x

+11 = §

°
o ale oe -y

tl2 = t10 - 5;

tl3 = *(fp + ioffset); // i
tld = t13 << 2;

tl5 = fp + t1l4;

* (tl5 + coffset) = tl2; // c[i]

UW CSE 401/M501 Autumn 2018

An example

x = a[i] + b[2];
c[i] = x - 5;

Constant folding: statically
compute operations
with known constant values

tl
t2
t3
t4
t6
t7
t8
t9

*(fp + ioffset); // i
tl << 2;

fp + t2;

*(t3 + aoffset); // a[i]
8; // was 2 << 2

= fp + t6;

*(fp

tl1l0

tl2 =

tl1l3

tl4 =

t1l5

*(tl5

= *(t7 + boffset); // b[2]

t4 + t8;
+ xoffset) = t9; // x = ..
*(fp + xoffset); // x
tl0 - 5;
*(fp + ioffset); // i
t1l3 < 2;
fp + t14;

+ coffset) = tl12; // c[i] := ..

UW CSE 401/M501 Autumn 2018

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset); // al[il]
=t

t7 = fp + 8; // was fp + t6

t8 = *(t7 + boffset); // b[2]
Constant propagation then t9 = t4 + t8;
dead store elimination * (fp + xoffset) = t9; // x = ..

tl0 = *(fp + xoffset); // x

tl12 = t10 - 5;

tl3 = *(fp + ioffset); // i

tld = t13 << 2;

tl5 = fp + t1l4;

* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401/M501 Autumn 2018 N-10

An example

t3 = fp + t2;
t4d = *(t3 + aoffset); // a[i]

t7 boffset + 8; // was fp + 8
t8 = *(t7 + fp); // b[2] (was t7 + boffset)
t9 = t4 + t8;

Arithmetic identities: + is *(fp + xoffset) = t9; // x =
commutative & associative. tl0 = *(fp + xoffset); // x
boffset is typically a known, t12 = t10 - 5;

compile-time constant (say t13 = *(fp + ioffset); // i
-32), so this enables... £14 = 13 << 2;

tl5 = fp + t1l4;
* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401/M501 Autumn 2018 N-11

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl << 2;
t3 = fp + t2;
t4d = *(t3 + aoffset); // a[i]
t7 = -24; // was boffset (-32) + 8
t8 = *(t7 + fp); // bl2]
t9 = t4 + t8;
... more constant folding, * (fp + xoffset) = t9; // x = ..
which in turn enables ... t10 = *(fp + xoffset); // x

tl12 = t10 - 5;

tl3 = *(fp + ioffset); // i

tld = t13 << 2;

tl5 = fp + t1l4;

* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401/M501 Autumn 2018 N-12

An example

t3 = fp + t2;

t4d = *(t3 + aoffset); // a[i]

7 = =24

t8 = *(fp - 24); // b[2] (was t7+£fp)
t9 = t4 + t8;

More constant propagation * (fp + xoffset) = t9; // x = ..
and dead store elimination t10 = *(fp + xoffset); // x

tl12 = t10 - 5;

tl3 = *(fp + ioffset); // i

tld = t13 << 2;

tl5 = fp + t1l4;

* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401/M501 Autumn 2018 N-13

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset); // al[il]
t8 = *(fp - 24); // bl[2]

t9 = t4 + t8;

*(fp + xoffset) = t9; // x = ..

Common subexpression t10 = *(fp + xoffset); // x

elimination — no need to £12 = t10 - 5;

compute *(fp+ioffset) again | ~st13 = ¢1- // i (was *(fp + ioffset))
if we know it won't change £14 = £13 << 2:

tl5 = fp + tl4;
* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401/M501 Autumn 2018 N-14

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset); // al[il]
t8 = *(fp - 24); // bl[2]

t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ..

Copy propagation: replace t10 = t9; // x (was *(fp + xoffset))
assignment targets with £12 = t10 - 5;

their values (e.g., replace tl3 = t1: // i

t13 with t1) tld = tl << 2; // was tl3 << 2

tl5 = fp + tl4;
* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401/M501 Autumn 2018 N-15

An example

t3 = fp + t2;

t4d = *(t3 + aoffset); // a[i]
t8 = *(fp - 24); // bl2]
t9 = t4 + t8;

*(fp + xoffset) = t9; // x =
Common subexpression t1l0 = t9; // x
elimination t12 = t10 - 5;

t13 = t1; // i

tld = t2; // was tl << 2

tl5 = fp + t1l4;
* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401/M501 Autumn 2018 N-16

An example

t3 = fp + t2;

t4d = *(t3 + aoffset); // a[i]
t8 = *(fp - 24); // bl2]
t9 = t4 + t8;

*(fp + xoffset) = t9; // x = ..

More copy propagation \tlo = t9; /] x
tl2 t9 - 5; // was t10 - 5

t13 = t1; // i

tld = t2;

tl5 = fp + t1l4;

* (tl5 + coffset) = tl12; // c[i] := ..

UW CSE 401/M501 Autumn 2018 N-17

An example

X =
c[1]

a[i] + b[2];

x - 5;

More copy propagation

tl
t2
t3
t4
t8
t9

*(fp

tl1l0
t1l2
tl1l3

tl4 =

t15

*(tl5

*(fp + ioffset); //
tl << 2;

fp + t2;

*(t3 + aoffset); //

*(fp - 24); //

td4 + t8;

+ xoffset) = t9; //
t9; //
t9 - 5;
tl; //
t2;
fp + t2;

i

ali]
b[2]

// was fp + tl4

+ coffset) = tl1l2; // c[i]

UW CSE 401/M501 Autumn 2018

N-18

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
c[i] = x - 5; t2 = tl1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset); // al[il]
t8 = *(fp - 24); // bl2]
t9 = t4 + t8;
*(fp + xoffset) = t9; // x = ..
Dead assignment —>+£10 = +9; /1=
elimination £t12 = t9 - 5:
\t13 — 1, y
A=
tl5 = fp + t2;

* (tl5 + coffset) = tl2; // c[i]

UW CSE 401/M501 Autumn 2018

N-19

An example

X

= a[i] + b[2];
c[i] =

x - 5;

Final: 3 loads (i, a[i], b[2]), 2 stores (X, c[i]), 5 register-only moves, 9 +/-, 1 shift

tl
t2
t3
t4
t8
t9

*(fp

t1l2
t1l5

* (tl5 + coffset) = tl2; // c[i]

*(fp + ioffset);
tl << 2;
fp + t2;
*(t3 + aoffset);
*(fp - 24);
t4 + t8;
+ xoffset) = t9;
t9 - §5;
fp + t2;

/] i

// alil
// bl2]

// x

Original: 5 loads, 2 stores, 10 register-only moves, 12 +/-, 3 *

Optimizer note: we usually leave assignment of actual registers to later stage of
the compiler and assume as many “pseudo registers” as we need here

UW CSE 401/M501 Autumn 2018

N-20

Kinds of optimizations

* peephole: look at adjacent instructions
* |ocal: look at individual basic blocks
— straight-line sequence of statements
* intraprocedural: look at whole procedure
— Commonly called “global”
* interprocedural: look across procedures
— “whole program” analysis
— gcc’s “link time optimization” is a version of this

e Larger scope => usually more effective optimization
when it can be done, but more cost and complexity

— Analysis is often less precise because of more possibilities

UW CSE 401/M501 Autumn 2018 N-21

Peephole Optimization

* After target code generation, look at adjacent
instructions (a “peephole” on the code
stream)

— try to replace adjacent instructions with
something faster

movqg %r9,16 (%rsp) movqg %r9,16 (%rsp)
movqg 16 (%rsp) ,%rl2 movqg %r9,%rl2

— Jump chaining can also be considered a form of
oeephole optimization (removing jump to jump)

UW CSE 401/M501 Autumn 2018 N-22

More Examples

subgq $8,%rax movqg %r2,-8(%rax)
movqg %r2,0 (%rax)

$rax modified
before next read

movqg 16 (%rsp),%rax |incqg 16 (%rsp)
addg $1,%rax

movqg %rax,1l6 (%rsp)
%$rax modified
before next read

* One way to do complex instruction selection

UW CSE 401/M501 Autumn 2018 N-23

Algebraic Simplification

* “constant folding

Z

N N N N N N

3

XX X X N

(x + y)

+

N O *F % * +
0 oo N KB O

e

e

°
4

n
)

4;

°
4

!

Z

N N N N N

—_—
—_—
—_—
—_—
—_—
\'

strength reduction’

=

)

7

<1 or z =x + x
<< 3
x >> 3 (only if know x>=0)

X
X
X
X

z = X (maybe; not doubles,
might change int overflow)

 Can be done at many levels from peephole on up

* Why do these examples happen?

— Often created during conversion to lower-level IR, by other optimizations, code gen, etc.

UW CSE 401/M501 Autumn 2018 N-24

Local Optimizations

* Analysis and optimizations within a basic block

* Basic block: straight-line sequence of
statements

— no control flow into or out of middle of sequence
* Better than peephole
* Not too hard to implement with reasonable IR

* Machine-independent, if done on IR

UW CSE 401/M501 Autumn 2018 N-25

Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with the constant (until variable
reassigned)

* Can enable more constant folding

— Code; unoptimized intermediate code:

count = 10; count = 10;
.. // count not changed tl = count;
x = count * 5; t2 = 5;
y = x * 3; t3 = t1 * t2;
x = 7; x = t3;
t4 = x;
ts = 3;
t6 = exp(t4,th);
y = t6;
x =7

UW CSE 401/M501 Autumn 2018 N-26

Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding
— Code; constant propagation:

count = 10; count = 10;
.. // count not changed tl = 10; // cp count
X = count * 5; t2 = 5;
y =x ~ 3; t3 = 10 * t2; // cp tl
x = 7; x = t3;
t4d = x;
ts = 3;
t6 = exp(t4,3); // cp t5
y = t6;
x =7

UW CSE 401/M501 Autumn 2018 N-27

Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding
— Code; constant folding:

count = 10; count = 10;
.. // count not changed tl = 10;
X = count * 5; t2 = 5;
y =x ~ 3; t3 = 50; // 10*t2
x = 7; x = t3;
t4 = x;
ts = 3;
t6 = exp(t4,3);
y = t6;
x =17;
n

UW CSE 401/M501 Autumn 2018

N-28

Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding

— Code; repropagated intermediate code

count = 10; count = 10;

.. // count not changed tl = 10;

X = count * 5; t2 = 5;

y =x * 3; t3 = 50;

x =17; x = 50; // cp t3
t4d = 50; // cp x
t5 = 3;
t6 = exp(50,3); // cp t4
y = t6;
x =17,

n

UW CSE 401/M501 Autumn 2018

N-29

Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding

— Code; refold intermediate code

count = 10; count = 10;
.. // count not changed tl = 10;
X = count * 5; t2 = 5;
y = x * 3; t3 = 50;
x = 7; x = 50;
t4 = 50;
ts = 3;
t6 = 125000; // cf 50”3
y = t6;
x =17;
n

UW CSE 401/M501 Autumn 2018

N-30

Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding

— Code; repropagated intermediate code

count = 10; count = 10;
.. // count not changed tl = 10;
X = count * 5; t2 = 5;
y = x * 3; t3 = 50;
x = 7; x = 50;
t4 = 50;
t5 = 3;
t6 = 125000;
y = 125000; // cp té6
x =17;

UW CSE 401/M501 Autumn 2018

N-31

Local Dead Assighment Elimination

* If l.Lh.s. of assignment never referenced again before being
overwritten, then can delete assignment

— Why would this happen?
Clean-up after previous optimizations, often

count = 10; count = 10;
.. // count not changed tl = 10;
x = count * 5; t2 = 5;
y =x * 3; t3 = 50;
x = 7; x = 50;
t4 = 50;
ts = 3;
t6 = 125000;
y = 125000;
x =17;

UW CSE 401/M501 Autumn 2018 N-32

Local Dead Assighment Elimination

* If l.Lh.s. of assignment never referenced again before being
overwritten, then can delete assignment

— Why would this happen?
Clean-up after previous optimizations, often

count = 10; count = 10;

.. // count not changed =0

X = count * 5; £2—=5+

y =x " 3; £3—=-50+

x =7; x*—=—50+
£4—=-50+
=
+6—=-125000+
y = 125000;
x =17,

UW CSE 401/M501 Autumn 2018 N-33

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

a[i] + b[i]

tl =

t2
t3
t4
t5
té
t7
t8

t9 =

*(fp
tl *
fp +
* (€3
*(fp
t5 *
fp +
* (&7
t4 +

+ ioffset);
4;

t2;

+ aoffset);
+ ioffset);
4;

t6;

+ boffset);
t8;

UW CSE 401/M501 Autumn 2018

N-34

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

. a[i] + b[1i]

tl =

t2
t3
t4
t5
té
t7
t8

t9 =

* (£p
tl *
fp +
*(t3
tl;

t5d *
fp +
* (t7
td +

+ ioffset);
4;

t2;

+ aoffset);

// CSE

4;

t6;

+ boffset);
t8;

UW CSE 401/M501 Autumn 2018

N-35

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

. a[i] + b[1i]

tl =

t2
t3
t4
t5
t6
t7
t8

t9 =

* (£p
tl *
fp +
*(t3
tl;

tl *
fp +
* (t7
td +

+ ioffset);
4;

t2;

+ aoffset);

4; // CP
t6;

+ boffset);
t8;

UW CSE 401/M501 Autumn 2018

N-36

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

. a[i] + b[1i]

tl =

t2
t3
t4
t5
t6
t7
t8

t9 =

* (£p
tl *
fp +
*(t3
tl;

t2;

fp +
*(t7
t4 +

+ ioffset);
4;

t2;

+ aoffset);

// CSE
t2; // CP
+ boffset);
t8;

UW CSE 401/M501 Autumn 2018

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

. a[i] + b[1i]

tl =

t2
t3
t4
t5
té
t7
t8

t9 =

* (£p
tl *
fp +
* (€3
tl;
t2;
t3;
* (€3
td4 +

+ ioffset);
4;

t2;

+ aoffset);

// CSE
+ boffset) ; //»
t8;

UW CSE 401/M501 Autumn 2018

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won’t have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

. a[i] + b[1i]

tl = *(£fp
t2 = t1 *
t3 = fp +
t4 * (€3
B =
2=t 2—
S
t8 * (€3
t9 td4 +

+ ioffset);
4;

t2;

+ aoffset);
// DAE

// DAE

// DAE

+ boffset);
t8;

UW CSE 401/M501 Autumn 2018

N-39

Intraprocedural optimizations

* Enlarge scope of analysis to whole procedure
— more opportunities for optimization
— have to deal with branches, merges, and loops

* Can do constant propagation, common
subexpression elimination, etc. at “globa
level

 Can do new things, e.g. loop optimizations

* Optimizing compilers usually work at this level
(-O02)

|”

UW CSE 401/M501 Autumn 2018 N-40

Code Motion

* Goal: move loop-invariant calculations out of loops
e (Can do at source level or at intermediate code level

for (i 0; 1 < 10; 1 = i+l) {
al[i] a[i] + b[3];
z =2z + 10000;

tl = b[j];

t2 = 10000;

for (i = 0; 1 < 10; 1 = i+l) {
a[i] = a[i] + t1;

N-41

Code Motion at IL

}

for (i

0; i < 10; i = i+1) {
b[]];

afi]

*(fp + ioffset) = 0;
label top;

t0 = *(fp + ioffset);
iffalse (t0 < 10) goto done;

tl = *(fp + joffset);
t2 = tl1 * 4;

t3 = fp + t2;

t4 = *(t3 + boffset);
tS = *(fp + ioffset);
t6 = t5 * 4;

t7 = fp + t6;

*(t7 + aoffset) = t4;
t9 = *(fp + ioffset);
tl10 = t9 + 1;

*(fp + ioffset) = t10;
goto top;

label done;

UW CSE 401/M501 Autumn 2018

N-42

Code Motion at IL

for (i = 0; i < 10; i = i+1l) {

a[i] = b[3J];
}
tll = fp + ioffset; t1l3 = fp + aoffset;
tl12 = fp + joffset; tl4 = fp + boffset
*(fp + ioffset) = O;
label top;

t0 = *tl1l;

iffalse (t0 < 10) goto done;

tl = *tl12;

t2 = t1 * 4;

£3—=—+14

t4 = *(t1l4 + t2);

t5 = *tll;

t6 = t5 * 4;

£—+13

*(tl3 + t6) = t4;

t9 = *tll;

tl0 = €9 + 1;

*tll = t10;

goto top; N-43
label done;

Loop Induction Variable Elimination

* A special and common case of loop-based strength reduction
* For-loop index is induction variable

— incremented each time around loop
— offsets & pointers calculated from it

* If used only to index arrays, can rewrite with pointers

— compute initial offsets/pointers before loop

— increment offsets/pointers each time around loop

— no expensive scaling in loop

— can then do loop-invariant code motion

for (i = 0; 1 < 10; i = i+1l) {
a[i] = a[i] + x;

}

=> transformed to

for (p = &a[0]; p < &a[l1l0]; p = p+4) {
*p = *p + x;

}

UW CSE 401/M501 Autumn 2018 N-44

Interprocedural Optimization

* Expand scope of analysis to procedures calling
each other

 Can do local & intraprocedural optimizations
at larger scope

* Can do new optimizations, e.g. inlining

UW CSE 401/M501 Autumn 2018 N-45

Inlining: replace call with body

* Replace procedure call with body of called procedure

* Source:
final double pi = 3.1415927;
double circle area(double radius) ({
return pi * (radius * radius);

}
double r = 5.0;

double a = circle area(r);
e Afterinlining:

double r = 5.0;

double a = pi * r * r;

 (Then what? Constant propagation/folding)

UW CSE 401/M501 Autumn 2018

N-46

Data Structures for Optimizations

Need to represent control and data flow

Control flow graph (CFG) captures flow of control
— nodes are IL statements, or whole basic blocks
— edges represent (all possible) control flow
— node with multiple successors = branch/switch
— node with multiple predecessors = merge
— cycle in graph = loop
Data flow graph (DFG) captures flow of data, e.g. def/use
chains:
— nodes are def(inition)s and uses
— edge from def to use
— a def can reach multiple uses

— a use can have multiple reaching defs (different control flow
paths, possible aliasing, etc.)

SSA: another way of linking defs/uses

UW CSE 401/M501 Autumn 2018 N-47

Analysis and Transformation

* Each optimization is made up of
— some number of analyses
— followed by a transformation
* Analyze CFG and/or DFG by propagating info forward
or backward along CFG and/or DFG edges
— merges in graph require combining info
— loops in graph require iterative approximation

e Perform (improving) transformations based on info
computed

* Analysis must be conservative/safe/sound so that
transformations preserve program behavior

UW CSE 401/M501 Autumn 2018 N-48

Example: Constant Propagation, Folding

 (Can use either the CFG or the DFG

CFG analysis info: table mapping each variable in scope to one of:
— a particular constant
— NonConstant
— Undefined

Transformation at each instruction:

— If an assignment of a constant to a variable, set variable as a constant
with known value

— If reference a variable that the table maps to a constant, then replace
with that constant (constant propagation)

— if r.h.s. expression involves only constants, and has no side-effects,
then perform operation at compile-time and replace r.h.s. with
constant result (constant folding)

For best analysis, do constant folding as part of analysis, to learn all
constants in one pass

UW CSE 401/M501 Autumn 2018 N-49

Merging data flow analysis info

e Constraint: merge results must be sound

— if something is believed true after the merge, then it must
be true no matter which path we took into the merge

— only things true along all predecessors are true after the
merge

* To merge two maps of constant information, build map
by merging corresponding variable information

* To merge information about two variables:
— if one is Undefined, keep the other
— if both are the same constant, keep that constant
— otherwise, degenerate to NonConstant (NC)

UW CSE 401/M501 Autumn 2018 N-50

Example Merges

AN
NN NS
NS

UW CSE 401/M501 Autumn 2018 N-51

Example Merges

int x int x
X := 5 % := 5 x = 1f(..)
X ==7 X ==7

UW CSE 401/M501 Autumn 2018 N-52

How to analyze loops

1=0; » Safe but imprecise:
=T 23 forget everything when
zhile () we enter or exit a loop
// what’s true here? * Precise but unsafe: keep
everything when we
=1+ 1 enter or exit a loop
y = 30;

} e Can we do better?

// what’s true here?

. X ... 1 ...y ...

UW CSE 401/M501 Autumn 2018 N-53

Loop Terminology
N |/

preheader

entry edge

head

back
edge

exit edge

UW CSE 401/M501 Autumn 2018 N-54

Optimistic Iterative Analysis

* |nitially assume information at loop head is same as
information at loop entry

* Then analyze loop body, computing information at
back edge

 Merge information at loop back edge and loop entry
e Test if merged information is same as original
assumption

— |If so, then we’re done

— If not, then replace previous assumption with merged
information,

— and go back to analysis of loop body

UW CSE 401/M501 Autumn 2018 N-55

Example

i=20;
x = 10;
y = 20;

while (...) {

i=0,x=10,y =20

// what’s true here?

i=1i4+1;

y = 30, }
// what’s true here? i=1,x=10,y =30
X ... 1 Y

UW CSE 401/M501 Autumn 2018

N-56

Example

i=0;

x = 10;

y = 20;

while (...) { i = NC, x = 10, y = NC

// what’s true here?

i=1+1;
y = 30; } |
// what’s true here? i = NC, x = 10, y = NC
X ... 1 ...Y

UW CSE 401/M501 Autumn 2018

N-57

Why does this work?

* Why are the results always conservative?

* Because if the algorithm stops, then

— the loop head info is at least as conservative as both
the loop entry info and the loop back edge info

— the analysis within the loop body is conservative,
given the assumption that the loop head info is
conservative

e Will it terminate?

— Yes, if there are only a finite number of times we can
merge information before reaching worst-case info
(e.g., NonConstant / NC)

UW CSE 401/M501 Autumn 2018 N-58

More analyses

e Alias analysis

— Detect when different references may or must refer to the same
memory locations

* Escape analysis
— Pointers that are live on exit from procedures
— Pointed-to data may “escape” to other procedures or threads

* Dependence analysis
— Determining which references depend on which other
references

— One application: analyze array subscripts that depend on loop
induction variables to determine which loop iterations depend

on each other
* Key analysis for loop parallelization/vectorization

UW CSE 401/M501 Autumn 2018 59

Summary

* Optimizations organized as collections of passes, each
rewriting IL in place into (hopefully) better version

e Each pass does analysis to determine what is possible,
followed by transformation(s) that (hopefully) improve
the program

— Sometimes “analysis-only” passes are helpful
— Often redo analysis/transformations again to take
advantage of possibilities revealed by previous changes

* Presence of optimizations makes other parts of
compiler (e.g. intermediate and target code
generation) easier to write

UW CSE 401/M501 Autumn 2018 N-60

