
UW CSE403 02Au 1

CSE 403
Lecture 12

Software Decomposition

UW CSE403 02Au 2

Design principles

n Understand the basic principles underlying
software design
n Modularization
n Coupling
n Cohesion

n Understand that the driving force behind
design is managing complexity

n Provides a basis for studying information
hiding, layering, patterns, etc.

UW CSE403 02Au 3

What is design?

n The activity that leads from
requirements to implementation

n A description that represents a key
aspect of this activity

n If the requirements are the “what” the
design (with an associated
implementation) is the “how”

UW CSE403 02Au 4

Design space

n There are many designs
that satisfy a given set
of requirements

n There are also many
designs that may at first
appear to satisfy the
requirements, but don’t
on further study

n Collectively, these form
a design space

n A designer walks this
space evaluating
designs

UW CSE403 02Au 5

Design: managing complexity

n Of course, this design space isn’t just sitting
out there for you to search like a library
catalog or the WWW

n You must also generate the designs
n A key aspect of design generation is

understanding that the goal is to achieve the
requirements in the face of the limitations of
the human mind and the need for teams to
develop products

UW CSE403 02Au 6

Dijkstra

n From “Programming considered as a human
activity”
n “The technique of mastering complexity has been

known since ancient times: Divide et impera
(Divide and rule). … I assume the programmer’s
genius matches the difficulty of his problem and
assume that he has a arrived at a suitable
subdivision of the task.”

n This final assumption is troubling! It’s a big
part of the job of software design!

UW CSE403 02Au 7

Motivation for Modules

n Managing complexity
n Independent development and

maintenance
n Reuse

n Component reuse
n Application reuse

n Portability
n Versioning

UW CSE403 02Au 8

Decomposition

n Design is largely a process of finding
decompositions that help humans manage
the complexity
n Understand that the design satisfies the

requirements
n Allow relatively independent progress of team

members

n Support later changes effectively

n Not all decompositions are equally good!

UW CSE403 02Au 9

Decompositions

n A decomposition specifies
a set of components
(modules) and the
interactions among those
modules
n It is often the case that the

components are related to
parts of an object model

n The degree of detail in the
specification varies

UW CSE403 02Au 10

Aside: Composition

n Decomposition
n The classic view of

design
n Given a fixed set of

requirements, what
decomposition is best?

n Composition
n An increasingly common

view of design
n Given a set of available

components, what design
that exploits them is best?

n Are there slightly different
requirements that are
easier to achieve given
those components?

In software, far less is
understood about
composition-based design
than needs to be

UW CSE403 02Au 11

Comparing designs

n Not all decompositions are equally good
n So, on what basis do we compare and

contrast them?
n Indeed, on what basis do we even

generate them?
n Parnas said: “Usually nothing is said

about the criteria to be used in dividing
the system into modules.”

UW CSE403 02Au 12

Coupling and cohesion

n Given a decomposition of a system into
modules, one can partially assess the design
in terms of cohesion and coupling

n Loosely, cohesion assesses why the elements
are grouped together in a module

n Loosely, coupling assesses the kind and
quantity of interconnections among modules

UW CSE403 02Au 13

Kinds of cohesion

n Elements can be placed together to
provide an abstract data type
n if they are all executed about the same

time (say, during initialization or
termination)

n because they will be assigned to a single
person

n because they start with the same letter
n because...

UW CSE403 02Au 14

“Good” vs. “bad” cohesion

n Best: functional, where the elements
collectively provide a specific behavior or
related behaviors

n Worst: coincidental, where the elements are
collected for no reason at all

n Many other levels in between
n Cohesion is not measurable quantitatively

UW CSE403 02Au 15

Coupling

n Coupling assesses the
interactions between
modules

n It is important to
distinguish kind and
strength
n kind: A calls B, C inherits

from D, etc.
n And directionality

n strength: the number of
interactions

UW CSE403 02Au 16

“Good” vs. “bad” coupling

n Modules that are loosely coupled (or
uncoupled) are better than those that
are tightly coupled

n Why? Because of the objective of
modules to help with human limitations
n The more tightly coupled are two modules,

the harder it is to think about them
separately, and thus the benefits become
more limited

UW CSE403 02Au 17

How to assess coupling?

n Kinds of interconnections
n Strengths of interconnections
n There are lots of approaches to quantitatively

measuring coupling
n I’m not especially satisfied by any of them
n They are not broadly used in industry

n More used in reengineering than forward engineering

n They are beyond the scope of this class

UW CSE403 02Au 18

What kind (of relations)?

n There are many kinds of interconnections
(relations) to consider
n calls, invokes, accesses, …

n how about invokes in an OO language using
dynamic dispatch?

n others?

n Question: how many different relations are
there among components of a software
system?

UW CSE403 02Au 19

names vs. invokes

n Here is an example of a
mix of relations

n Module A registers
interest with an event
that B can announce

n When B announces that
event, a function in A is
invoked

n A knows the name of B,
but B doesn’t know the
name of A

A B

Registers interest

Invokes with an event

UW CSE403 02Au 20

Hierarchical designs

n Loose coupling is often
associated with
hierarchical designs
n They also tend to arise from

repeated refinements of a
design

n Hierarchies are often more
coupled than they appear
n Because of other relations

UW CSE403 02Au 21

Strength of interconnection

n Q: does a module that relies on an ADT
module have stronger interconnection if it
makes calls to all the exported methods (as
opposed to only a couple of them)?

n Q: what if it calls one or two methods, but it
calls them millions of times each?

n Q: what if it has more kinds of relations with
that module?

UW CSE403 02Au 22

Use a single module?

n Great cohesion!
n No coupling!
n Where’s the failure?

UW CSE403 02Au 23

Language support for modules

n Ada
n Basic
n C
n C++
n Fortran
n Java
n Pascal
n VB

UW CSE403 02Au 24

How do languages support
modularity

n Grouping
n Access levels
n Interfaces

UW CSE403 02Au 25

Advantages of language
support

n Facilities
n Ease of expression of modules

n Regularity
n Common mechanisms used for modularity

n Enforcement
n Can count on mechanisms working

(sometimes)
n Error/violation detection

UW CSE403 02Au 26

Faking modularity

n Manual packaging
n Naming conventions

n Modular programs can be written in
languages that don’t support modularity

n Non modular programs can be written
in languages that do

