
1

CSE 403
Lecture 17

Coding

Step through your code

n Maguire
n Step through new code in the debugger

the first time it is used
n Add code, set break points, run debugger

n Add code, run tests, if failure, run debugger

n Knuth
n Developed tool to print out first two

executions of every line of code

Candy machine interfaces

n Error prone return values or arguments

n Classic bad example, getchar() returns an int!
n Alternate approach

n bool fGetChar(char pch);

n Many bugs with malloc returning NULL

char c;

c = getchar();

If (c == EOF) …

Another coding quiz

char tolower(char ch){

}

Handling out of range inputs

n Ignore
n Return error code
n Assert
n Redefine the function to do something

reasonable
n Write functions that, given valid inputs,

cannot fail

Code tuning

n Don't overestimate cost
n A true story

n A heated debate on whether to code a key
function in Excel in assembly or C

n The difference was 12 cycles
n Eventually an engineer instrumented the

three hour Excel torture test, and found
that this function was called 76,000 times

n The net savings was . . .

2

Efficiency gains

n Algorithmic improvement
n O(n log n) sorting vs. O(n2) sorting

n Resource usage
n File write vs. Memory write

n Inner loop of key routine
n [Knuth] 4% of code uses 50% of runtime

Efficiency

n Avoid recomputation n Cache results

r1 = (-b + sqrt(b*b – 4*a*c)) / (2*a);

r2 = (-b - sqrt(b*b – 4*a*c)) / (2*a);

q = sqrt(b *b – 4*a*c);

r1 = (-b + q) / (2*a);

r2 = (-b – q) / (2*a);

int foo(int n){

if (n < 0 || n >= fooCache.Length)

throw new Exception(“Foo err”);

if (inCache[n])

return fooCache[n];

else {

fooCache[n] = computerFoo(n);

inCache[n] = true;

return fooCache[n];

}

}

Efficiency

n Reductions in strength
n if (sqrt(x) < sqrt(y))…

Efficiency

n Memory management
n Even in Java / C#
n Preallocating/reusing large objects

n Buffer pool

Efficiency vs. Clarity

n Almost always favor clarity over
efficiency
n The human reader is more important
n Compilers and processors have improved

significantly in the last four decades

Debugging

n What are the key steps in debugging a
program?

3

Kernigan and Pike's debugging
wisdom

n Look for common patterns
n Common bugs have distinct signatures

n int n; scanf("%d", n);

n Examine most recent change
n Don't make the same mistake twice
n Debug it now, not later
n Get a stack trace
n Read before typing

K & P, II

n Explain your code to someone else
n Make the bug reproducible
n Divide and conquer

n Find simplest failing case

n Display output to localize your search
n Debugging with printf()

n Write self checking code
n Keep records

