Fiseon Inc.

Technical Documentation

[image: image1.png]

TaxisRUs
Taxi Dispatching System

[image: image9.png]Fiseon, nc,

Technical Documentation

Table of Contents

31.
Introduction

32.
Installation

43.
Design and Implementation

43.1.
The TaxisRUs System

113.2.
The Model

193.3.
The Scheduler

203.4.
The Mapper

223.5.
The Dispatcher Workbench

293.6.
The CabConsole

343.7.
The Manager Reports

363.8.
The Datastorage

404.
Link to online documentation

405.
Tests List

406.
For next versions

1. Introduction

This document describes the design and implementation of the dispatching system as a whole and of each of its subsystems.

After reading this document, one should be able to understand :

· How to install the system

· What the system guarantees to do and under what preconditions

· What are the relationships between the different subsystems

· The architecture of each subsystem

· What are the GUI actions for each subsystem that contains GUI

· What assumptions and design decisions were taken during the development process

· What tests passed and what failed

· What left to next versions

2. Installation

Installation guide

3. Design and Implementation

3.1. The TaxisRUs System

3.1.1. General

The primary objective of this system is to create a taxi tracking and dispatching system that uses GPS to enhance the current telephone and radio dispatch system of Evergreen Cab Company. The dispatch system is required to manage a fleet of taxis and handle all tracking and dispatch needs 24 hours a day. The system is required to run on a Windows 2000 platform.

3.1.2. Preconditions

Please see the installation document.

3.1.3. Responsibilities

The taxi dispatching system tracks cabs and drivers by their zone and notes several states that a cab can be in, such as busy, waiting for a customer, or booked off. The system has a list of zones in which each zone maintains its own cab queue. The system is able to locate cabs using a GPS system that is updated every time a cab changes its state. The system stores statistics such as cab mileage, cab fare, the frequency of driver ride refusals, pickup times, and the frequency of on-time pickups (see Manager User Interface documentation for more details).

3.1.4. Assumptions

1. Cabs remain within the local area that is covered by the zones.

2. A customer does not request multiple cabs at once under the same reservation name and phone number. With this restriction, it is suggested that the company should formulate a naming convention to request multiple cabs at the same time (i.e. for a customer named John Doe requesting 2 cabs, the dispatcher should type in John Doe1, and John Doe2 in the first and last name fields. Upon a customer query the dispatcher must use the same naming formula to retrieve information on John Doe’s two cabs.).

3. Once a cab has dropped off its customer, it will remain in its zone until it is scheduled with a new customer.

4. Cabs cannot be hailed.

3.1.5. Architectural Decisions

1. RMI was used to better represent the several autonomous dispatcher and cab console applications.

2. The Model was designated as the center of all communications so that the autonomous modules (Scheduler, Dispatcher UI, Manager UI, Mapper, and Cab Console) had a common interface to the DataStore without all having a reference to it.

3. Threading was implemented in the ManagerUI, Model, Dispatcher, and Scheduler to improve run time since RMI time usage was high.

3.1.6. Architecture Diagram (see next page)

[image: image5.png]Data Flow for Use Case #3

B.15

Reservations

Customens.

ETA

Scheduler

Timer

b o)

Cstomer
Mndel Zon Dl/é nding SMKSCMM
-~ Zone Data” Comsspa .
Dunseree _Uphinieite Sy
o . Zones | # Zones —

Hazpu 12.13.16 r -
| —aps Defion Zones

MapperUl

Camntstte | M50 \
A Info Add Customar
Current State
ero - Update {GPS, milage
port Que stats of csb, mater)
7 // Remote Method frvocation (RMI) \\ \ 3
ETA
ManagerUl)
[\a,m,u,w \
Manager Reports Maintenance A\l
pre—— Cah Console
T
User Enters

Customer Data

3.1.7. Information Flow Diagram
3.1.7.1. Case1
1. user enters customer data

2. add customer object to model

3. add customer to scheduler

4. [image: image6.png]Data Flow for Use Case #1
Zone R
ona it 6 Timer
Resemations Gustoras
L ko)
o il s
{—_Zoe Data” Componing Send
. e UpdsesBoot Up 4
Data Storage Castomes Tafo Customers 5 Zome Address’
Claners Zonas 14 Zomwr— gper
| ——GPs Define Zones
Store Dt
7 Mapper U
oo N
Request/Change. Info Add Customer
Gament Stte 2
Raport s Update (GPS,milge
pert Qe stats of cab, meter}
Fmote Miethod Tavocation G800 |
gETA
gl
Manager Reports Maintenance
Frm—— Cab Comsle

T

User Exters |
Customer Data

send address to mapper

5. mapper returns corresponding zone

6. send Estimated Time of Arrival (ETA) to model

7. store customer in data store

8. ETA to dispatcherUI

3.1.7.2. Case 2

1. Scheduler task fires

2. Zone object retrieved from model for customer pickup

3. Task generates request for a ride (sends request through model)

4. [image: image7.png]Data Flow for Use Case #2
3 Zone Rec
P i B)
Accept/Reject-> l Rasermations Customars
T st EO)
Model 2 Schedule’
- Zone Data” Conesponding Send 1
rasunge | Upsts Gt o
Dutionge_Uphot il g e
s o0
| ——GPs Define Zones
6 Mappertl
¢ N
‘Raquest/Change. Info A4dd Customer
Report Queses < AcceptjReject-> Update (GPS, milage
e
Femote Nethad wocation G0 ||
T
T
ooy Bl e s
Frm—— Cab Consle

T

User Enters
Customer Data.

Accept / reject sent through model to scheduler

5. Scheduler tells model results of accept / reject

6. Model relays info to data store

3.1.7.3. Case 3

Getting customer info.

1.
dispatcher requests customer state from model

2.
model requests customer state from scheduler

3.
send data from scheduler to model

4.
send state from model to dispatcher - return value

Canceling customer (continued from step 4)

5.
dispatcher cancels the customer returned from model

6.
model request the scheduler to cancel the customer

7.
scheduler request model to notify the cab if the customer has been scheduled.

8.
model notifies the cab

9. model notifies the storage

10. return true to dispatcher

Changing customer info/rescheduling (continued from step 4)

11.
dispatcher edit customer information and changes the customer info

12.
if the customer needs to be rescheduled

steps 6 – 9 are perfomed.

13.
model reschedule the customer as a new customer.

see use case 1.

14. return new ETA to dispatcher

15. if the customer does not needs to be rescheduled, get customer from scheduler

16. change the customer info.

17. return the old ETA to dispatcher

[image: image8.png]Data Flow for Use Case #3

B.15

Reservations

Customens.

ETA

Scheduler

Timer

b o)

Cstomer
Mndel Zon Dl/é nding SMKSCMM
-~ Zone Data” Comsspa .
Dunseree _Uphinieite Sy
o . Zones | # Zones —

Hazpu 12.13.16 r -
| —aps Defion Zones

MapperUl

Camntstte | M50 \
A Info Add Customar
Current State
ero - Update {GPS, milage
port Que stats of csb, mater)
7 // Remote Method frvocation (RMI) \\ \ 3
ETA
ManagerUl)
[\a,m,u,w \
Manager Reports Maintenance A\l
pre—— Cah Console
T
User Enters

Customer Data

3.2. The Model

3.2.1. General

The Model holds the current state of the cab world. It keeps track of each cab’s location and availability. It interacts with all components of the system: Scheduler, Mapper, Dispatchers, Cab Consoles, and DataStore. The Model acts as the “communication hub” of the system.

3.2.2. Preconditions

The Mapper must be running before the model is started.

Zones must be established before starting the Model.

3.2.3. Responsibilities

1. Keep the state of the cab world current

a. Keep the state of each zone (in which reside all available cabs) current

b. Keep the Busy Cab List (a list of currently occupied cabs) current

2. Keep the state of each cab current

3. Make sure all appropriate data (for statistical and persistence reasons) is entered into the data store

4. Make sure all actions (requested by anyone) are handled by the correct modules and result in the appropriate state changes to the cab world – See the following data flow diagrams

5. Relay information between modules as needed—acts as “communication hub”
3.2.4. Assumptions

1. The scheduler keeps the customers and the reservation list and asks the Model for cabs in a specific zone at the appropriate time.

2. The Cab Console has the current GPS signal and updates the model with it upon the event that a cab goes on duty, becomes free, or becomes busy.

3. The Dispatcher UI should create a customer object and add it to the model for scheduling. Any change to the customer involves creating another customer object. Customer identification requires the phone number and name fields to be set correctly. Communications to or from the Cab Console or the Dispatcher UI/Manager UI must go through the model because of RMI requirements.

3.2.5. Architectural Decisions

1. Each call from the Dispatcher UI/Manager UI will spawn a new thread to handle the request in order to make the requesting process more efficient.

2. Cab status (the cab is busy or free) is kept implicitly, depending on if it is located in a zone or the busy cab list).

3. The Model will update itself when the appropriate function calls are made (i.e. the scheduler informs the Model of a cab reservation, the Dispatcher UI sends the customer to the Model for processing, the cab console calls model with GPS update).

4. RMI (Remote Method Invocation) was used as an interface to the DispatcherUI, the ManagerUI, and the Cab Console.

3.2.6. Architecture Diagram

3.2.7. Information Flow Diagram

3.2.7.1. Case 1 – Make reservation

3.2.7.2. Case 2 – Schedule customer

3.2.7.3. Case 3a – cancel customer

3.2.7.4. Case 3b – Change customer

3.2.7.5. Case 4 –Drop off customer

3.3. The Scheduler

3.3.1. General

The Scheduler tracks customers in the system and finds cabs for them when appropriate.

3.3.2. Preconditions

A Model is needed to communicate customer data to the Scheduler and to communicate data between the Scheduler and the CabConsoles

3.3.3. Responsibilities

 Store customer data until the customer is picked up

 Be able to perform, on customers within the system:

o Adds

o Lookups

o Removals

 Schedule a customer to a cab when appropriate and communicate the ride request to the Model

 Ensure that the system will not stall when communicating or looking for cabs

3.3.4. Assumptions

None

3.3.5. Algorithm description

Class Description
3.3.6. Architectural Decisions

TBD

3.3.7. Architecture Diagram

TBD

3.3.8. Information Flow Diagram

Scheduler Data Flow Diagrams
3.4. The Mapper

3.4.1. General

The Mapper is a subsystem of the Scheduler. Its job is to create zones after the user draws them on the Mapper. The Mapper is launched when the system starts. The only user of the Mapper is the tech guy who is supposed to start the system. The user is supposed to click on the drawing pad to create zones.

3.4.2. Preconditions

A model server should be running and there should be a successful database connection.

3.4.3. Responsibilities

· Return the number of zones created to the model

· Store the zone polygons in the database

· Convert addresses to zones
3.4.4. Assumptions

None

3.4.5. Architectural Decisions

TBD

3.4.6. Architecture Diagram

Architecture Diagram
3.4.7. Information Flow Diagram

Information flow Diagram
3.4.8. GUI Action List

	GUI Action
	Goal
	Methods that are called
	Actions

	
Mouse clicked on the drawing area
	
Draw in the drawing pad
	
paintComponent()
	 1. Add points
2. Generate polygons
3. Draw polygons

	
Save button pressed
	
Save data into the database
	
saveDB()
	 1. Save polygons
2. Save GPS coords
3. Save the filename

	
Load button pressed
	
Load file
	
ImageFileToLoad()
	1. Load a map image file

	

Clear button pressed
	
Clear the drawing pad
	
clear()
	
1. Clear all points

3.5. The Dispatcher Workbench

3.5.1. General

The Dispatcher Workbench (DispatcherUI) is a (GUI) graphical user interface used by dispatchers (customer reservation agents) to make reservations, get information about existing reservations, change reservations, or cancel reservations.

The DispatcherUI is the client side of a client/server application. It connects to a server (the Model) running the main dispatch system (see Information Flow diagrams for a picture of the architecture). The DispatcherUI is a separate executable that can be installed on any machine meeting the system requirements.

[image: image2.jpg]ispatcher Workbench:

HELP: For specific information on any input field or button, hover
‘your mouse over the field label and instructions will appear, or see the
User's Manual

First Name (max 20) Last Name (max 29)
[J [|

Phone Number (xxx xxx %%4%)

Get Prior Customer

[i]
Pickup Time (HH:mm) Pickup Date (MM-DD-YYYY)
| =

N o Passsrgers
]

] o

[concetReservaton | [ciear Al customer ke |

=lolx|

3.5.2. System Requirements

Any machine running Windows 2000/Windows XP and a Java Virtual Machine (JVM) 1.3 or higher.

3.5.3. Preconditions

The machine running the DispatcherUI must have a network connection to a server running the main dispatch system (the Model).

3.5.4. Responsibilities

· Create a new customer reservation.

· Retrieve an existing reservation from the Model.

· Change an existing reservation.

· Cancel an existing reservation.

3.5.5. Architectural Description

In this section, we discuss the general design decisions used in constructing the Dispatcher’s Workbench. Following the general overview is a discussion of each Java class. This is done so that the reader can easily understand how all of the classes work together and make it easier to make future changes to this subsystem.

· We decided to construct the Dispatcher Workbench using standard Java components. The GUI was constructed using Java Swing components, and the remote connection was constructed using Java’s RMI (discussed below). The reason we chose standard Java components is that these components are well tested and reliable. In addition, using standard components will make future code changes and maintenance easier.

· The client connects to the server using Java’s Remote Method Invocator (RMI), which allows a remote client to make method calls on the server. RMI was chosen because it is a standard Java component. The connection class was abstracted using ModelRMIConnection. In the event of a different type of remote connection (i.e. wireless), this connection abstraction can be replaced.

· DispatcherUI.java. The Dispatcher Workbench is a separate executable that runs on the dispatcher’s workstation. The main class is included in DispatcherUI.java. The DispatcherUI instantiates the remote connection. It also instantiates DispatcherTabbedPane.

· DispatcherTabbedPane.java. It was decided to instantiate the workbench on a tabbed pane. This is to allow for future extensions to the workbench. With this design, it will be easy to add additional functionality by implementing additional tabbed panes. The DispatcherTabbedPane instantiates two Java panels: CustomerInfoPanel and ReservationInfoPanel. These are the two panels that are displayed in the GUI for entering customer information and displaying this information, respectively.

· CustomerInfoPanel.java. The CustomerInfoPanel contains all of the input fields and action buttons. The actionPerformed method in this class contains the methods that are called when buttons are pushed. The CustomerInfoPanel also instantiates an instance of DispatcherImplementation.java (described below).

· DispatcherImplementation.java. This class was created to pull methods out of the CustomerInfoPanel to enable JUnit testing.

· ReservationInfoPanel.java. This class contains a text field for displaying information about customer reservations. When the Make Reservation, Change Reservation or Cancel Reservation buttons are pushed, information about the customer event is displayed in this panel, so that dispatchers can confirm the event with the customer.

3.5.6. Information Flow – Make Reservation

3.5.7. Information Flow – Change Reservation

3.5.8. Information Flow – Cancel Reservation

3.5.9. GUI Action List

	GUI Action
	Goal
	Methods that are called in CustomerInfoPanel.java
	Actions

	Make Reservation button pressed
	Enters a new customer reservation into the system
	Public void actionPerformed(ActionEvent enterEvent)

ActionEventString = makeReservtionString

	1. Creates a new customer using the information in the input fields.

2. Sends new customer object to the model.

	Get Prior Customer button pressed
	Retrieve an existing customers information
	Public void actionPerformed(ActionEvent enterEvent)

ActionEventString = getCustomerInfoString

	1. Retrieves an existing customer object using the phone number, last name and first name.

2. Fills in the input fields using the customer object information.

3. Changes the state of the Change Reservation and Cancel Reservation buttons to actionable.

	Immediate Pickup button pressed
	Automatically fills in the Time and Date input fields with the current time and date
	Public void actionPerformed(ActionEvent enterEvent)

ActionEventString = immediatePickupString

	1. Fills in the Pickup Time and Pickup Date with the current time and date.

	Change Reservation button pressed
	Changes any of the input fields of an existing customer reservation
	Public void actionPerformed(ActionEvent enterEvent)

ActionEventString = changeReservtionString

	1. Button is only actionable after an existing customer reservation is retrieved using the Get Prior Customer Button.

2. Makes changes to the customer reservation based on the revised information in the input fields.

	Cancel Reservation button pressed
	Cancels an existing customer reservation
	Public void actionPerformed(ActionEvent enterEvent)

ActionEventString = cancelReservtionString

	1. Button is only actionable after an existing customer reservation is retrieved using the Get Prior Customer Button.

2. Cancels the customer reservation

	Clear All Customer Fields Reservation button pressed
	Clears all of the input fields and the Reservation Info panel
	Public void actionPerformed(ActionEvent enterEvent)

ActionEventString = clearCustomerFieldString

	1. Clears all input fields and the Reservation Info Panel.

3.6. The CabConsole

3.6.1. General

The Cab Console System simulate the hardware in a real cab.

It runs on a separate computer from the model and the dispatcher systems. It communicate with the Model by using RMI.

The user is the Cabbie that use the UI to operates the system.

3.6.2. Preconditions

A model should run on the server computer.

3.6.3. Responsibilities

· Send Model CabId and DriverID after log in

· Get new customer from Model and send Accept/Reject.

· Display customer Information.

· Send update messages to Model.

· Get cab cancellation from Model and send update message.

· Pick up new customer and send update to model.

3.6.4. Assumptions

Machine has a JRE installed on it and is connected to the network

3.6.5. Architectural Decisions

· The major architectural decision was to use distributed computing and to simulate the communication between the Cabs and the Model by using RMI. This architecture does not simulate communication through transmitters and main transmitter tower but as the customer requested it simulate the distribution of cabs.

· Another architectural decision was to represent each hardware component (GPS, Meter, CreditCardSlider) in a class.

3.6.6. Architecture Diagram

3.6.7. Information Flow Diagram
3.6.7.1. Case 2 – Accept/Reject a ride

3.6.7.2. Case 3,4 -Cancel and change a ride

3.6.8 GUI Action List

	GUI Action
	Goal
	Methods that are called
	Actions

	Log In button was pressed
	Log into the system
	_cabConsole.loginCab

(String cab_ID,string driver_ID)
	1. Registers cab to model

2. Sets Cab Id

3. Sets Driver Id

4. Sets Login Status to true

5. Updates Display

	
	
	_cabConsole._model.registerCabToModel(

_cabConsole,

_cabConsole._cabID,

_cabConsole._driverID,

_cabConsole.make_indv_GPS_Msg())
	

	
	
	_cabConsole.changeLoginStatus(true);

	

	Accept button was pressed
	Accept a request for ride
	_cabConsole.changeCabStatus(WAITING);
	

	Reject button was pressed
	Reject a request for ride
	cabConsole.changeCabStatus(FREE);
	1. changes cab status to free

	Start Meter button was pressed
	Start the cab’s meter for a new ride
	_cabConsole.cabMeter.startMeter();

_cabConsole.changeCabStatus(BUSY);
	1. Starts the meter

2. changes cab status to busy

	Stop Meter button was pressed
	Stop the cab’s meter, end the current ride
	_cabConsole.cabMeter.stopMeter();

_cabConsole.changeCabStatus(FREE);
	1. stops the meter

2. changes cab status to free

	Log Out
	Log out of the system
	
	

	Emergency button was pressed
	Call 911
	
	

3.7. The Manager Reports

3.7.1. General

The Manager User Interface is a tool intended for managers and supervisors to view company statistics gathered by the TaxisRUs taxi dispatch system. Using the Installer, the ManagerUI should be installed on the computers of managers and/or supervisors. It operates by sending the user specified parameters to the TaxisRUs server and receiving in response the data that it displays on a frame which can then be either printed or saved to an html file.

3.7.2. Preconditions

First, a TaxisRUs server must be running on a computer. The server’s IP address must be known and entered into the prompt upon start up.

3.7.3. Responsibilities

· Gather parameters from user and request report from server based on those parameters

· If parameters are invalid, prompt user to enter valid parameters

· Display returned report in a legible manner

· Save and print report upon request

3.7.4. Assumptions

· Machine has a JRE installed on it and is connected to the network

3.7.5. Architectural Decisions

All frames are java swing JFrame objects or extensions of them. All the buttons, text fields, and labels are encapsuled in JPanels which are encapsuled in the JFrames.

The ManagerReportsPanel is the main class of this subsytem. It is responsible for initializing all the buttons, implementing action listeners, and passing the arguments along with the request for a manager report through the Server Connection object. When the ManagerReport is received from the server connection object, a new frame is instantiated (ReportDisplayFrame) that creates and displays a table with all the data in it.

3.7.6. Information Flow Diagram

3.8. The Datastorage

3.8.1. General

There is no direct consumer user who interacts with the DataStore subsystem; there is no user interface. However, other subsystems use the information stored, requesting it through the Model for conventional use and for backup in case of a crash.

The DataStore subsystem uses a PostgreSQL database to hold information on past rides, customers, ride requests, cabs, dispatchers, drivers, and zones, and to check that this information is valid based on the information already in the database (for instance, that a customer is in a zone which exists).

3.8.2. Preconditions

A PostgreSQL database must exist on a server that the system can connect to, and the startup user must provide the correct server path, user name, and password.

3.8.3. Responsibilities

· Setup database tables on startup

· Store information on past rides, customers, ride requests, cabs, dispatchers, drivers, and

· zones.

· Alter stored information.

· Return stored information.

· Query the database and return the manager reports on a variety of topics.

3.8.4. Assumptions

The system currently assumes that the cabs and drivers remain constant; however, the capability for this extension of functionality is included in the structure of the database. In addition, the database provides for the extension of CorporateAccounts. Assumed constraints include the limitation of one customer name per ride.

3.8.5. Algorithm Description

We defined the acceptance rate to be (the number of finished rides) divided by (the number of finished rides plus the number of denied rides). If there are no completed rides, the acceptance rate is defined as 100%

We defined the average cab income to be the average fare received for a cab ride.

We denote invalid zoneids in the database with the value 99999.

3.8.6. Architectural Decisions

Future architectural updates can be found here.

We used JDBC in conjunction with PostgreSQL since Postgre was the available DB type.

For simplicity and modularity, the manager report requests are passed as types and parameters, then translated into the SQL queries by the DataStore Interface. Examples of queries can be found here.

The information for reset is passed by specialized functions returning a vector of just one type for ease of handling by the model; one large lump of data was deemed more difficult to extract data from than a single vector for each data type.

Further architectural decisions are footnoted into the DataStore schema.

3.8.7. Architecture Diagram

[image: image3.png]DataStore Architecture

DataStore
Interface

ManagerUI + Upon startup, create
ables and start DataStore ?
conneetion to DB. B
Methods to add, s for
i d q
@ €, TEmOvE, an RideRequests,
return data and reporisiw,_
¢ Fom the database. Drivers, Cabs,
Dispaichers, Zones,
Also includes the Completed Rides,
fanctionality o resel DispaicherOverrides,
e information Fide Denils, eiz
stored in Model ®
1. ManagerUl sends requests fo reports through Model. 6. DS rebums requested data to DS Interface
2. DataStore (DS) Interface returns reports through Model. 7. For detais, see JavaDoc public interface documentation.
3. Model sends information and requests to DS Inierface. 8. The gelall methods provide this functionalily. ”
4. DS Interface returns requested information, 9. Our database; implemented with PostgreSQL.
5. DS Interface adds data or sends requests to DS 10. See the Daabase Schema for defails

Updted gt 12,2002

3.8.8. Information Flow Diagram

[image: image4.png]Data Flow Diagram

Cabs
Corporate Accouts
Dispatchers
Zomes
DispatchrOvernides
Drivers
Shifts
Fie Denials
Cunent Custoraers
Connestion nformation (one-tine)

(8QL) DataStore

Oury—set et | 5 p]
Jacd tables (ome-tirae) Tokerfucps iih
PostgreSQL Database Model.
Regief [Model interacts wi| Gizpatcher Audit
ManagerUl Vector of Custoruers
DispatcherUL Vector of Zones
Scheduler Manager Report

Responsibilities
> Long term storage of operational/statistical data
> Provide opportunity to recover data in case of crash
> Generate and maintain statistics
> Pass statistics off to Model (who will pass them off to ManagerUI)
» Create database connection and tables upon first run of Model
st gt 12,202

 Future DataFlow updates can be found here.

4. Link to online documentation

JavaDoc
5. Tests List

unit test outline
Formal acceptance test 1
Formal acceptance test 2
Formal Acceptance Test 3

Formal acceptance test 4
Formal start up acceptance test
Documentation of all tests
6. For next versions

Total System
· System crash recovery

· System security – password protection for server & dispatcher

· Handled hailed cabs

System Maintenance

· Setup/Remove cabs and drivers

· Configuration of queue size

System Management

· State of system display

· Graphical representation of cabs on streets

Dispatcher

· Login screen for security

· Corporate accounts

· Type of cab

Database

· Remove canceled customers

· Store cab login, logout occupancy rate

Scheduler

· Improve ETA algorithm

· Handle manual override ofcabs

· Notify dispatcher of customers exceeding pickup time by 5 min.

· Dispatcher

· Login screen for security

· Corporate accounts

· Type of Cab

CabConsole

· Present meter information on screen

· Pause meter

· Query number of cabs in zones

 Managerial Reports

· Additional reports

· Cab utilization rates

· Corporate accounts revenue

· Hours on duty

· Dispatched calls

· Report writing system

Note: The comments corresponding to the arrows are examples of information passed from the module at the end of the arrow to the module at the head of the arrow.

customer info, report info for manager

information for reports from datastore

request for reports to datastore

request accept/reject from sched.

update cab info to model, answer accept/reject to sched.

addCustomer to model/request ETA, change customer info

Manager UI

Mapper

DataStore

Customer

Zone

Cab

Cab Console

Cab Console

DispatcherUI

DispatcherUI

Scheduler

Customer List

Model

Busy Cab/

Reservation List

Zone list

� EMBED PBrush ���

Model

Waiting cabs

Waiting cabs

Zones

Busy Cab List

The Busy Cab List is:

A holding place for busy cabs that do not belong in a Zone

The place to find the busy cab in case of status queries or in the event of a customer drop off

A Zone is:

A representation of the geographic region returned by the Mapper.

A holding place for all available cabs listed by their wait time

The first place to search upon the firing of a customer event

5 Return the eta

4 Store customer information

addRideRequest()

Datastore

3 Receive eta.

Zones

2 Send customer object to scheduler for scheduling. addCustomerToQueue()

1 Receive generated Customer object seeking a ride. addCustomer()

Dispatcher UI

Scheduler

Busy Cab List

5 Return false

4 true: Return true.

4 false: Update datastore with refusal addDenial()

Datastore

3 Receive boolean true or false

Zones

1 Receive request to schedule a cab that is within the zone and has the been waiting longest. RideRequest()

Scheduler

Cab Console

Busy Cab List

Model

7 Return a new ETA if rescheduling made, original ETA if no rescheduling occurred

6 Inform cab of any changes made Change()

4 Update datastore with new Customer. updateRideRequest()

Datastore

3 Receive eta

Notes:

After step 1, the Model determines if the change requires a rescheduling. If no rescheduling required, the Customer object is changed and the function returns. The diagram depicts the case in which a rescheduling is needed.

Zones

Busy Cab List

Model

1 Receive old and updated Customer object changeCustomer()

Dispatcher UI

Scheduler

Mapper

Zones

3 Cancel customer

5 notify cab

6 get cab’s zone #

7 transfer cab from BCL to zone list, placing cab at front of list

2 cancelCustomer(phone, lastName, firstName)

1 Cancel customer (identified by phone# and last name)

4 Locate cab console

(scheduled

(not yet scheduled

Database

Busy Cab List

Model

Dispatcher UI

Scheduler

3 Remove cab from busy cab list

4 Reset cab variables

5 Find zone that cab is in and place it into the the zone list

2 Update Data Store with payment #s, cab state (meter, gps), and customer state, etc.

1 Update model with cab state (meter, gps) and customer state

Cab Console

Data Store

Mapper

CreditCardSlider

Zones

Busy Cab List

Model

ModelRMIInterface

Meter

GPS

Driver

A

R

CabConsole

CabConsoleUI

Accepted / Rejected

newAcceptOrReject

3

acceptOrReject

String CustomerInfo

2

registerCabToModel

_cabConsole, _cabConsole._cabID, _cabConsole._driverID,

_cabConsole.make_indv_GPS_Msg.booleanValue()

1

CabConsole

Model

Legend:

Green – sequence number

Orange – method name

Light blue – data

UpdateModelCabInfo

5

String CustomerInfo

4

CabConsole

Model

Outgoing_message

UpdateModelCabInfo

7

Cancel

String CustomerInfo

6

Outgoing message

Change

Cancel customer

Return prior customer

Request prior customer info

Modify customer information

Request prior customer info

Return prior customer

Taxi ETA

Create customer

ManagerReport

ManagerReport

getReport

3

2

1

Legend:

Green – sequence number

Orange – method name

Light blue – data

ReportDisplayFrame

ModelRMIInterface

Manager User Interface

ModelRMIInterface

Zones

Busy Cab List

Model

Dispatcher UI

ModelRMIInterface

Zones

Busy Cab List

Model

Dispatcher UI

Zones

Model

Busy Cab List

Dispatcher UI

ModelRMIInterface

41

August 14, 2002

_1090654645.bin

_1090832322

_1090652796.bin

