Mobile Phone Multiplayer Game System Life Cycle Objectives

Eugene Lam (eugene@cs.washington.edu)

Cameron Tom (cameront@cs.washington.edu)

1. Operational Concepts - What is it?

Top level system objectives and scope

Our product targets users who want to play turned-based multiplayer games on-the-go. It works on java-enabled mobile phones with internet connection. Our product comprises of a midlet on the mobile phone side and a central servlet on the server side, which includes a Game API for easy programming of games. It will also include integrated chat.

Potential players will be interested because our product does not limit the setting in which they play their games. Users can be away form workstations, and players in the same multiplayer game are not limited by distance.

Game developers will be interested in how our Game API handles the sending and receiving of messages between the player’s midlet and the game server.
2. System Requirements - What does it do for us?

Essential system features at an appropriate level

For users, it provides a group communication system for them to chat and play games. The user will interact with the GameReader. User features:

· Login and retain user settings and preferences, such as buddy list and hotkeys

· View and send messages to other users on their buddy list

· Join with other users in a chatroom

· Browse a list of existing multiplayer games and group applications

· Generic GameReader eliminates need to update user’s phone software for new games

For game developers (if you can call tic-tac-toe programs developers), our system provides a layer of abstraction that keeps track of all the network communication and user tracking aspects. On the server side, our Game API defines how games receive data from the players and what graphics objects games can create. On the midlet side, the generic game reader displays any game. Developer features include:

· Game API provides an easy interface to program games

· Generic GameReader on the midlet eliminates need to implement user-side software for every new game.

· User tracking

· Apply usernames to all users and relay when users enter or leave

· Keep track of which users are in which games and send data appropriately

· Integrated chat allows users to message one another during a game or across different games

Since our focus is mostly on multiplayer games, our product will provide no web browsing capabilities. Moreover, the games are restricted to being turned-based, as opposed to realtime.
3. System and software architecture – How?

Support analysis of feasibility at this level

Our system has the following hardware requirements:

· Phones that support Java midlets

· Phones with necessary bandwidth (2.5G minimum, 3G recommended)

· Phones with enough memory (100KB minimum)
· System server able to handle the volume of requests

Game Reader interprets generic game data. Games are in the form of a class that implements the game API and reside on the server.

· Reader to Game

· Game reader knows how to make and manipulate screen objects (including handling UI), but does not know mechnics/behavior of game.

· Game reader sends interaction data to our servlet via requests.

· Servlet parses requests and can creates or ends games

· Servlet relays key-presses and form contents from readers to games by invoking Game API routines

· Game to Reader

· Game class handles key presses and changes game state

· A change in the game results a change in what players should see; game determines the objects that should be created

· Servlet-side game API routines generates object creation and manipulation data

· Servlet relay changes to game readers as responses

4. Lifecycle plan - Who wants it? Who'll support it?

Identification of the major stakeholders now, future

The product is meant to deliver a multiplayer experience to mobile phone users. The core aspects of the product are the handling of the communication between the mobile phone midlet and servlet and the Game API.

In the first week of our lifecycle, we must carefully define our interfaces between the servlet and the games. Afterward, we can split the team into server communication and Game API subteams. In the initial weeks, the communication team needs to program a stable servlet-to-midlet communication system and handling of parsed data to pre-created games. The Game API team must define basic shapes and textboxes, and create a simple prototype for testing the system.

The server communication team then needs to tackle user-tracking, integrated chat, and dynamic creation of games. The Game API team needs to provide a sufficient graphics library for programming games and to properly manage those graphics on the midlet’s generic game reader.

Extensions will include more elaborate user profiles, richer graphics libraries, support for multiple game servlets, and programming of innovative games.

During the initial versions of the product, the collection of games will not be developed, and the system will not be ready to handle the volume of actual use. Therefore, freeware developers will have to be relied upon as the source of server-side games, and the product will have to be tested on an educational or public server (for example, our lovely CS servers; who wouldn’t agree to that?).

Future development and maintenance and of our product will rely heavily on outside support—either from game developers or companies that would want to purchase our software. The system will also have to be adapted to handle larger volume of users, and be secure

5. Feasibility Rationale - Is this really true?

Evaluate conceptual integrity and compatibility

The crucial issue in development is determining whether the product can be developed within the planned schedule depends on the complexity of the different components. Yet decisions made about the different components will affect the product’s requirements.

For example, the functionality of display objects made available to the games must be limited, but still be sufficient enough with which to create good games. By limiting the functionality of the Game Reader to the rendering of game elements, we should be able to defer most complexity to the server-side game objects.

It is unlikely that the target users will pay money for an online game service. Currently, companies such as Yahoo offer simple online games to users for free. Moreover, online gaming generates revenue only when they are based off top selling game titles, beyond the technical possibilities of games for the mobile phone. Therefore, our product will not be a heavy generator of revenue. The future support for our product will rely heavily on outside support.

Corporations can support the system if we include splash ads during logins and logouts, and also include games with themes related to products (along the lines of mundane products like Nabisco crackers…nothing controversial, of course)
