
11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 1

System Requirements

CSE 403, Spring 2003
Software Engineering

http://www.cs.washington.edu/education/courses/403/03sp/



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 2

References

• References
» The Mythical Man-Month, Brooks
» Chapter 7, Before the Project, The Pragmatic

Programmer, Hunt & Thomas
» Structuring Use Cases with Goals , A. Cockburn

• http://alistair.cockburn.us/crystal/articles/alistairsarticles.htm

» Use cases in theory and practice, A. Cockburn
• http://alistair.cockburn.us/crystal/articles/alistairsarticles.htm



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 3

System Requirements
• Essential features of the system

» defined at a level appropriate to the spin cycle
» capabilities, interfaces, reliability levels, appearance
» Easy to change early on, grows increasingly more difficult

• Customer’s involvement very important
» they know the domain of interest far better than you do
» what fits with their daily work and life patterns
» what might the future bring

• Neither you nor the customer know everything
» try to build joint ownership of the process
» open communication can make change more acceptable



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 4

What does the customer want?

• Better products for free
» Scott Adams

• Many customers exist for any single product
» purchaser, user, user’s management, support, etc

• Write down attributes of expected user set
» Who they are
» What they need
» What they think they need
» What they want



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 5

Attributes have a distribution
• Attributes of the user set are distributions

» many possible values
» each value with its own frequency

• The design will not meet all requirements of all
members of the user set all the time
» Postulate a complete set of attributes and frequencies
» Develop complete, explicit, shared description of

users
» It is better to be explicit and wrong than to be vague

FPBrooks, MMM



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 6

“Complete” Requirements

• You want to write down every requirement for
every user of every aspect of the program
» It’s not possible, there isn’t enough time or money

• You have to find a balance
» comprehendible vs. detailed correctness
» graphics vs. explicit wording and tables
» short and timely vs. complete and late

• Different approaches for different parts are okay



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 7

Modularity, not a “pile of paragraphs”
• Split the information by point of view and adapt

the documentation style as appropriate
» Business functions

• top level mission of application (text, graphics, Flash?)
• specific functions that must be implemented (use case)

» Context
• drawings, text, references to interface standards

» User Interface
• text goals, sample layouts, some prototypes

» Performance and Reliability
• text goals, specific metrics for space, time, CPUs, ...



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 8

Concise is nice
• All the details are necessary at some point

» but only some of the details are relevant right now
• Arrange the requirements so that the reader

can drill down in areas of interest without
having to pick out the details from chaos
» Data flow graphics for top-level orientation
» Tabular presentation of specific metrics

• The lower the level, the more structured
» eg, Scenarios vs. Use Cases



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 9

Use Cases

• Use cases address “how to make functional
requirements readable, reviewable”
» As an expression “use case” is immediately

attractive because the term implies “the ways in
which a user uses a system”

• “I have personally encountered over 18
different definitions of use case”, A. Cockburn

• “True use cases are textual descriptions, with a
hierarchy and cross-links.”, Hunt & Thomas



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 10

Use case dimensions
• Purpose

» To gather user stories, or build requirements?
• values are stories, or requirements

• Contents
» Consistent, or can they be self-contradicting?

• contradicting, consistent prose, formal content
• Plurality

» Does a use case contain more than scenario?
• 1 or multiple

• Structure
» Informal structure or formal structure?

• unstructured, semi-formal, formal structure A. Cockburn



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 11

One choice

• Consistent, semi-formal documentation of
requirements
» Purpose = requirements
» Contents = consistent prose
» Plurality = multiple scenarios per use case
» Structure = semi-formal

A. Cockburn



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 12

What is a use case?

• Sequence of interactions between the system
under discussion and its external actors, related
to a particular goal
» An action connects one actor’s goal with another’s

responsibility
» An interaction is simple or compound
» Scenarios and use cases go until goal success or

abandonment

A. Cockburn



Cockburn’s use case template



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 14

Sample use case

Pragmatic Programmer



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 15

Sample continued

Pragmatic Programmer



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 16

Overspecifying
• The simplest statement that accurately reflects

the business need is best
» Requirements are not architecture or design
» Requirements are need

• Overspecified requirements are dangerous
» they cannot be understood
» they will not be read
» they will rot
» and they will be wrong



11-April-2003 cse403-06-SystemRequirements © 2003 University of Washington 17

Requirements are fun

• This is the time when you have the most leverage
to create a successful project
» you can change direction with the stroke of a pen
» you can re-architect the moment you gain a deeper

understanding of the true need
» you can apply all the design tools and experience in

your tool chest to finding ways to enable what is now
only a dream for the customer

• Plus, you learn about a new knowledge domain!


