
22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 1

Functional Specs

CSE 403, Winter 2003
Software Engineering

http://www.cs.washington.edu/education/courses/403/03wi/

22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 2

Readings and References

• References
» Painless Functional Specifications, Joel Spolsky

• http://www.joelonsoftware.com/printerFriendly/articles/fog0000000036.html

» Anchoring the Software Process, Barry Boehm, USC
• http://citeseer.nj.nec.com/boehm95anchoring.html

22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 3

Elements of Lifecycle Objectives (LCO)

• Operational Concepts What is it?

• System Requirements What does it do for us?

• System and software architecture How?

• Lifecycle plan Who wants it? Who'll support it?

• Feasibility Rationale Is this really true?

22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 4

System Requirements
• Essential features of the system

» defined at a level appropriate to the spin cycle
» capabilities, interfaces, reliability levels, appearance
» Easy to change early on, grows increasingly more difficult

• Customer’s involvement very important
» they know the domain of interest far better than you do
» what fits with their daily work and life patterns
» what might the future bring

• Neither you nor the customer know everything
» try to build joint ownership of the process
» open communication can make change more acceptable

22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 5

System and Software Architecture

• Sufficient detail to support feasibility analysis
» multiple viable choices is great at this stage
» people lock on to a particular architecture very

quickly and get attached to their perceived piece
• If you can’t define an architecture that seems

to make sense, don’t ignore the problem
» Basic data flow or performance problems will kill

a system, no matter how many features it has
» Rethink why and for whom you are doing this

22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 6

Risk Reduction

• “Failing to write a spec is the single biggest
unnecessary risk you take in a software project”
» Joel Spolsky

• The act of writing the spec -- describing how the
program works [from user perspective] in minute
detail -- will force you to actually design the
program
» you get a chance to see the potholes before you fall in
» you get a chance to back up and change your mind

before you’ve written thousands of lines of code

22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 7

Once in motion, ideas stay in motion
• People get attached to their creations

» if it’s just a paragraph or two, it’s easy to change
» if it’s pages and pages, it’s hard to change

• Nobody wants to throw out hard work
» even if the problem it solves is now irrelevant!
» it feels like criticizing, instead of discussing

• Architects get blinders very quickly
» if we take that approach, then my group won’t be

needed at all on this project ∴ that’s a bad approach
22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 8

Specs as Communication Support

• It’s always amazing how:
» people hear and remember some things
» people hear and don’t remember other things
» two people hear exactly the same thing and

remember something completely different
• Write stuff down, then point to it when needed

» single source of information
» fantasy reduction benefits are huge

• but remember, specs are a tool, not a magic elixer

22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 9

Face the problems early

• Writing an outline of program features makes
you think about the high level areas of interest
» Can’t overlook major functional areas

• Writing the details makes you think about how
you are going to do these things
» Can’t overlook major architectural defects

• While you’ve still got time, you can toss the
early architecture and replace it completely

22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 10

What’s in the spec?

• An author
» Take responsibility for your work

• Scenarios
» Let the customers see these ideas in action

• Non-goals
» Eliminate the “implied” goals

• Overview
» Elevator pitch with a drawing or two

22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 11

What else is in the spec?

• Details of operation from user perspective
» what’s it look like to the various users
» what happens during overload, weekends
» general performance parameters
» typical equipment requirements

• Open issues
» state them explicitly

• Side notes
» for different reader communities

22-January-2003 cse403-06-FunctionalSpecs © 2003 University of Washington 12

Spolsky’s Rules for Writing

• Be funny
» be specific, people love it and will discuss it

• Be understandable
» a customer who understands will help you succeed

• Write as simply as possible
• Review and reread
• Templates considered harmful

» an entry to fix every oversight in the last 5 years

