
10-February-2003 cse403-11-LA2BA © 2003 University of Washington 1

LittleApp to BigApp

CSE 403, Winter 2003
Software Engineering

http://www.cs.washington.edu/education/courses/403/03wi/

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 2

Readings and References
• Reading

» Chapters 1-3, Pragmatic Programmer, Hunt and
Thomas

• Other References
» Chapter 19, Designing for Change, Rapid

Development, McConnell
» Perfection and Simplicity, and Designing

Distributed Systems, from A Conversation with
Ken Arnold, by Bill Venners, artima.com

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 3

Programming Systems
Product

Programming System

Programming Product

Program

interfaces, system integration

generalization, testing,
documentation, maintenance

LittleApp

BigApp

3 X

3 X

from Mythical Man-Month

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 4

From LittleApp to BigApp

• Our LittleApp prototypes have shown that the
basic concepts are workable

• Likely open issues
» Correctness - dummy data
» Completeness - inflexible sources, usability
» Robustness - frustrating response to errors
» Style - design, generalization, documentation

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 5

Design issues

• Interfaces
» What are the defined interfaces?
» Which fundamental decisions cannot be changed

and still use the same architecture?
• Modules

» What are the major modules using those interfaces?
» Can fundamental design decisions in one module

be changed without affecting the other modules?
• Documentation

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 6

Designing for Change

• Change happens
» underlying technology changes, a performance

goal is not met, new requirements are levied
» perhaps the product is a success and lives for a

decade or two!
• A successful design

» hides the implementation decisions
» can change locally without causing ripples

throughout the entire structure

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 7

Not a single tool, but an approach

• Identify areas likely to change
• Use information hiding to conceal the design

decisions
• Develop a change plan
• Define families of programs
• Use object-oriented design

from McConnell, Chap 19

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 8

What might change?
• Hardware for sure - many possible platforms
• File formats - how many graphics formats?
• Inputs and outputs, user’s natural language
• Non-standard language features, libraries
• Features that are difficult to implement (AWT)
• Global variables
• Specific data structures and abstract data types
• Business rules, sequence of actions
• Requirements that were excluded, new features

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 9

Implementation is not just a detail

• What is important to keep in mind when you
are designing a distributed system?
» A distributed system, in the sense in which I take

any interest, means a system in which the failure
of an unknown computer can screw you.

» Failure is the defining difference between
distributed and local programming, so you have to
design distributed systems with the expectation of
failure.

from Designing Distributed Systems, A Conversation with Ken Arnold, by Bill Venners

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 10

Develop a change plan
• Use abstract interfaces first, then classes
• Never use hardcoded literals
• Use late binding strategies

» dynamic allocation of data structures
» let the data structure tell you how big it is

• Use table driven strategies
» getAppProperty(String key) midlet jad file
» getInitParameter(String name) servlet web.xml file
» servlet name to class mapping in web.xml

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 11

More change plan

• Don’t duplicate code or state
» put it in a single method and call it when needed

• Keep the methods and classes simple and
cohesive
» easier to reuse or use in a new way

• Avoid coupling
• Keep the general purpose layers free of

implementation leakage from below

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 12

Define families of programs
• What are the change vectors?
• If your product is a success, where will it go

next?
» international? - language, currency, measurement
» system scale? - cell, PDA, desktop browser, server
» product distribution? - corporate, personal retail,

educational, ad supported, free “lite”
• Think about the minimal subset of functions

needed in all versions and how to present it

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 13

Perfection and Simplicity
• I once heard you say there is no such thing as a

perfect design. Could you clarify what you meant by
that?

• There is no such thing as a perfect design for a couple
of reasons.
» All designs take place in context … who will be using your

design? … if you try to create a perfect design you will
expend a huge amount of effort ... then there's the problem
of predicting the future.

• The best that people can reasonably hope for is to put
forth an appropriate amount of effort and get a good
design that is sufficient.

fromPerfection and Simplicity, A Conversation with Ken Arnold, by Bill Venners

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 14

Now build it!

• Bad design leads you down the wrong road
• Bad construction takes you down a road full of

potholes and bone-jarring problems
• Good construction techniques

» help build in quality the first time
» avoid having to back up and start over
» provide good visibility on how it’s going without

using made-up numbers
• “we’re 96% done”

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 15

Some construction fundamentals

• Agreed-on coding standards
» naming, layout, documentation

• Data-related concepts
» scope, persistence, binding times

• Control-related
» complexity, control structures, exceptions

• Errors and exceptions
» assertions, defining and handling exceptions

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 16

More construction fundamentals
• Integration strategies

» Unit-testing and debugging
» Build and packaging practices

• Code tuning and performance measurement
• Programming tools

» editors, IDE, interoperability
» group work support tools (email, change visibility)
» source code revision management
» bug tracking

10-February-2003 cse403-11-LA2BA © 2003 University of Washington 17

http://java.sun.com/people/arnold/

Someday this will
no doubt be a
vivacious page,
brimming with
fascinating
information,
penetrating
analysis, and the
most succulent links. Until then, this will have to do.

