
12-February-2003 cse403-12-Construction © 2003 University of Washington 1

Construction

CSE 403, Winter 2003
Software Engineering

http://www.cs.washington.edu/education/courses/403/03wi/

12-February-2003 cse403-12-Construction © 2003 University of Washington 2

Readings and References

• Reading
» Chapters 4-6, Pragmatic Programmer, Hunt and

Thomas
• Other References

» Chapter 18, Daily Build and Smoke Test, Rapid
Development, McConnell

» The Joel Test: 12 Steps to Better Code, Joel Spolsky
http://www.joelonsoftware.com/printerFriendly/articles/fog0000000043.html

12-February-2003 cse403-12-Construction © 2003 University of Washington 3

Some construction fundamentals

• Agreed-on coding standards
» naming, layout, documentation

• Data-related concepts
» scope, persistence, binding times

• Control-related
» complexity, control structures, exceptions

• Errors and exceptions
» assertions, defining and handling exceptions

12-February-2003 cse403-12-Construction © 2003 University of Washington 4

More construction fundamentals
• Integration strategies

» Unit-testing and debugging
» Build and packaging practices

• Code tuning and performance measurement
• Programming tools

» editors, IDE, interoperability
» group work support tools (email, change visibility)
» source code revision management
» bug tracking



12-February-2003 cse403-12-Construction © 2003 University of Washington 5

The Joel Test
• Do you use source control?
• Can you make a build in one step?
• Do you make daily builds?
• Do you have a bug database?
• Do you fix bugs before writing new code?
• Do you have an up-to-date schedule?
• Do you have a spec?
• Do programmers have quiet working conditions?
• Do you use the best tools money can buy?
• Do you have testers?
• Do new candidates write code during their interview?
• Do you do hallway usability testing?

12-February-2003 cse403-12-Construction © 2003 University of Washington 6

Disclaimer (Spolsky)

• Of course, these are not the only factors that determine
success or failure:
» in particular, if you have a great software team working on a

product that nobody wants, well, people aren't going to want
it.

» And it's possible to imagine a team of "gunslingers" that
doesn't do any of this stuff that still manages to produce
incredible software that changes the world.

• But, all else being equal, if you get these 12 things right,
you'll have a disciplined team that can consistently
deliver.

12-February-2003 cse403-12-Construction © 2003 University of Washington 7

Software Configuration Management (SCM)

• SCM is the practice of managing project
artifacts so the the project stays in a consistent
state over time
» processes for evaluating proposed changes
» tracking changes and enabling roll-back
» handling multiple versions

• Most often applied to source code, but also
beneficial for requirements, design, test cases,
user documentation, scripts, etc, etc

12-February-2003 cse403-12-Construction © 2003 University of Washington 8

Source Control

• The team product is a complete working program
» correctly built from synchronized and correct source

code and resources and tested appropriately
• Multiple people working on one collection of

sources can be a nightmare unless managed well
» Overlapping changes, old and inconsistent versions
» Disks crash, houses burn, computers are stolen
» There are good tools to help you manage integration!

• use CVS, not caffeine



12-February-2003 cse403-12-Construction © 2003 University of Washington 9

Make a build in one step
• On good teams, there’s a single script you can

run that
» does a full checkout from scratch
» rebuilds every line of code
» makes the binary executable files in all versions,

languages and #ifdef combinations
» creates the installation package
» creates the final media - CDROM, web site, …

• All steps are automatic and exercised regularly
12-February-2003 cse403-12-Construction © 2003 University of Washington 10

Daily Build and Smoke Test

• Build the entire product every day and run a
good test suite against the new version
» automatic and frequent
» canary in the mine - find out early that you’ve got

problems and fix them before disaster strikes
• Benefits

» Minimizes integration risk
» Reduces risk of low quality
» Supports easier defect diagnosis
» Improves morale - developers, managers, customers

12-February-2003 cse403-12-Construction © 2003 University of Washington 11

Using Daily Build and Smoke Test
• Build daily

» Developers check in working modules
» The build is the heartbeat or sync pulse of project

• Check for broken builds and fix problems
» Define appropriate quality level
» At minimum, build should be useful for testing

• complete compile, link, package, and pass smoke test

• Smoke test daily
» exercise entire system from end to end
» grow the tests with the system

12-February-2003 cse403-12-Construction © 2003 University of Washington 12

Use a bug data base

• You need to know
» how to reproduce the bug
» expected behavior, actual behavior
» current owner of the bug
» status (open, fixed)

• You can’t keep the bug list in your head!
• There are numerous tools available

» Don’t use something that is so fussy that it is a big pain to
enter, comment on, and close bugs

» free trial version of FogBUGZ is available
» an Excel spreadsheet can do the job



12-February-2003 cse403-12-Construction © 2003 University of Washington 13

Fix bugs before writing new code

• Don’t build the termites into the structure
» Bugs are always easier to find soon after creation

rather than after time has gone by
• Sometimes bugs reveal fundamental problems

» you may have a basic concurrency problem!
• You can’t accurately schedule the repair and

release of a system made from defective parts
held together with duct tape and prayer

12-February-2003 cse403-12-Construction © 2003 University of Washington 14

Up to date schedule
• “It will be done when it’s done!”

» When will my computer be repaired?
» When will you finish your degree?
» When will you have a releasable product?

• Confidence in the schedule enables all sorts of
decision making and planning to go on
» lower stress, higher morale all around

• A good schedule helps you resist feature creep
» Don’t let the doodads build up and delay delivery

12-February-2003 cse403-12-Construction © 2003 University of Washington 15

Have a Good Specification

• Know what you are building
» Write it early
» Keep it up to date

• The spec is the tool that can help you see
where you are going to have problems
» Are the scenarios realistic?
» How you are going to accomplish the promises?
» It’s a lot easier on everybody to change the

promise now than to break the promise later
12-February-2003 cse403-12-Construction © 2003 University of Washington 16

Have quiet working conditions
• Minimize uncontrollable distractions

» turn off your email
» turn off Pizzlet notifier

• Be focussed when you are alone and working
» get in the zone and blast away

• Be focussed when you are meeting and
discussing with others
» communication is important, so make good use of

the time you are together



12-February-2003 cse403-12-Construction © 2003 University of Washington 17

Use the best tools money can buy
• This doesn’t mean the most expensive tools!
• Spend the time to understand

» which tools you need
» which tools you already have
» what you need to be more productive

• If you need an investment, think about how to
request it then stand up and request it
» There is a lot of money available, why should it be

spent on you?
12-February-2003 cse403-12-Construction © 2003 University of Washington 18

Use testers as basic part of the team

• Testing is a different mindset from developing
• It can be interesting to do and very revealing in

its results
• Your customers are going to test all the nooks

and crannies of your system anyway
» testers are your friends, not your enemy!
» find out the problems now, not after shipping

12-February-2003 cse403-12-Construction © 2003 University of Washington 19

Write code during interviews

• We are not hiring, but still ...
» You are writing code while learning the processes
» You are using a variety of tools and processes

• Think about your projects at an abstract level
» Could you describe the successes and problems in

the project life cycle?
» Could you lay out a project plan for a hypothetical

system product that uses a reasoned selection of
tools and techniques?

12-February-2003 cse403-12-Construction © 2003 University of Washington 20

Hallway Usability Testing

• Does this project and its design make sense to
somebody who is not married to the project?

• Let somebody new use the product
» Do they understand what it is?
» Do they like it?
» Do they make assumptions that you never thought

of?
» It only takes a few people doing this to understand

if you are on track.



12-February-2003 cse403-12-Construction © 2003 University of Washington 21

Some support tools

• Ant - build, package, test integrator
• JUnit - testing framework
• JavaNCSS - simple code metrics
• JDepend - design quality metrics
• Checkstyle - coding standard checker
• FogBUGZ - bug tracking
• CVS - source code revision management


