Architecture

CSE 403, Winter 2003
Software Engineering

http://www.cs.washington.edu/education/courses/403/03wi/

21-February-2003 cse403-14-Architecture © 2003 University of Washington 1

Readings and References

» References
» Software Architecture, David Garlan, CMU, 2001
* http://www-2.cs.cmu.edu/~able/publications/encycSE2001/

» A Practical Method for Documenting Software
Architectures, Clements, et al, CMU, 2002
+ http://www-2.cs.cmu.edu/~able/publications/icse03-dsa/
» Enterprise JavaBeans Specification, Sun Java Community
Process
* http://java.sun.com/products/ejb/docs.html

21-February-2003 cse403-14-Architecture © 2003 University of Washington 2

Software Architecture

» The software architecture of a program or
computing system is the structure or structures
of the system, which comprise

» software components
» the externally visible properties of those components
» and the relationships among them.

From Software Architecture in Practice, Bass, Clements, Kazman, referenced in Garlan

21-February-2003 cse403-14-Architecture © 2003 University of Washington 3

View

* The architecture of a system describes its gross
structure using one or more views

* Structure in a view illuminates a set of top-
level design decisions
» how the system is composed of interacting parts
» where are the main pathways of interaction
» key properties of the parts

» sufficient information to allow high-level analysis
and critical appraisal

21-February-2003 cse403-14-Architecture © 2003 University of Washington 4

Uses of an Architectural Description

* Understanding

» Abstraction means that we can grasp the major
elements in a view and the rationale behind them

* Reuse

» Reusable chunks must be visible to be recognized,
extracted, generalized and reapplied to new areas

» Construction

» Some views provide a partial blueprint for
development - components and dependencies

21-February-2003 cse403-14-Architecture © 2003 University of Washington

More Uses of an Architectural Description

* Evolution

» Expose the “load-bearing walls” of the design and
distinguish between components and connectors

* Analysis

» Consistency, performance, conformance
* Management

» Milestone: successful analysis of valid architecture
« Communication

» Stakeholders can prioritize explicit tradeoffs

21-February-2003 cse403-14-Architecture © 2003 University of Washington 6

How to describe an architecture?

* “Boxes and lines” &

» graphical, adaptable, intuitive Tj’ >
G=

» traditional architecture description \

* Some issues
» meaning of the graphical symbols varies
» inconsistent or incomplete information

» difficult to formally analyze for consistency,
completeness, correctness

» constraints are hard to show, enforce

21-February-2003 cse403-14-Architecture © 2003 University of Washington 7

Architectural Description Languages

» Formal notations for representing and analyzing
architectural descriptions

» Provide a conceptual framework and concrete
syntax for characterizing software architectures

» also provide tools for parsing, displaying, compiling,
analyzing, or simulating the architectural description

* Details of the ADL vary widely depending on
the intended application domain

» Like metrics - useful but judgement required for use

21-February-2003 cse403-14-Architecture © 2003 University of Washington 8

Multiple views

» A key understanding is that multiple views of
the architecture are valid

» different stakeholders need to see different things

» different aspects of the system are best viewed
from different points of view

* Code-oriented views
» modular structure of the system, layers
» Execution-oriented views

» dynamic configurations, performance, reliability

Entities in an execution-oriented view

21-February-2003 cse403-14-Architecture © 2003 University of Washington 9

System and Software Components
» hardware, programs, data blocks

Connectors

» mediate interactions among components

Configurations

» combinations of components and connectors

Constraints

» resource limitations, operating environment

21-February-2003 cse403-14-Architecture © 2003 University of Washington

Enterprise Java Bean Examples

« This is the specification of the Enterprise JavaBeans
TM architecture.

» The Enterprise JavaBeans architecture is a component
architecture for the development and deployment of
component-based distributed business applications.

» Applications written using the Enterprise JavaBeans
architecture are scalable, transactional, and multi-user
secure.

» These applications may be written once, and then
deployed on any server platform that supports the
Enterprise JavaBeans specification.

Chap 3: Roles and Scenarios

21-February-2003 cse403-14-Architecture © 2003 University of Washington 1

* Discusses the responsibilities of
» Enterprise Bean Provider (Aardvark, Wombat)
» Application Assembler (Wombat)
» Deployer (IT Staff)
» EJB Container and Server Providers (Acme)
» System Administrator (IT Staff)

 with respect to the Enterprise JavaBeans
architecture.

21-February-2003 cse403-14-Architecture © 2003 University of Washington

Module view of deployed application

Employee
Record

Aardvark
Payroll

Employee
Service
Employee
ServiceAdmin

deploved enterprise beans

ACME EJB Container
A Web Server K /‘

. ACME EJB Server /

(c) Wombat’s application is deployed in ACME’s EJB Container at the ABC enterprise.

deployed
ISP pages

Payroll module

p HR module

ABC's ERP System

ABC's pension
plan application

6.2.2 What a container provides

The following diagram illustrates the view that a container provides to clients of session beans that pro-
vide local and/or remote client views. Note that a client may be a local client of some session beans and

a remote client of others

Client View of session beans deployed in a Container

container

EIBObjects ’

EJBHome

session bean 1

client

2

EJBLocalObjects ’
[]
EJBLocalHome

session bean 2

21-February-2003 cse403-14-Architecture © 2003 University of Washington 13
Figure 21 Example of Inheritance Relationships Between EJB Classes
jarva. e Remote Java.fo.Serfalizahle
Inheritance ; State Transition
DK
Relationships ******* -y === —— — - Diagram client’s meffmff on re{é'rem'e ‘
Enternriselie Emterprise generates NoSuchObjectException or
EJBMewData EIBObect RlErprisesean o aReans NoSuchObjectLocalException
A EJBHome ¢

SesstonBear

enterprise bean
provider

Cart {Wombat Inc.)
CartHone
CartBean
AcmeRemote cants
. e

AcmeMetaData | AcmeHome AcmeBean P,'K:,‘,::
produced by
Aeme tols

AemeCartHome AcmeRemoteCart

AcmeCartMetaData AcmeCartBean

—= extends or implements interface

—= extends implementation, code gener 1, or delegation

Jervar inverfice Java class

does not exist
an
not referenced

does not exist
an

referenced

release reference

Container crash,
or bean timeout

handle.gett JBOb] exists

and
referenced

A

not referenced

release reference

object.remove(),
home.create<METHOD=>(...) home.removef...),
system exception in bean,
bean timeout,

or

Container crash

client s method on reference

A session object does not exist until it is created. When a client creates a session object, the client has a

reference to the newly created session object’s component interface.

Figure 8 OLD for session object at start of a mansaction.

container provided classes

Object Interaction
client EIB EJB container session synchro- | instance transaction database

Dlagram (Local) (Local) context Mization service
Home — Object

(.
|_javax.transaction.UserTransaction.begin()
t t

business method

—

| |
If the instance was [)(L\',\!\‘Iht‘d it is leactivated
| |
T
|

new

registerSynchronization{ s)'nchrrniznuml)

read somekata

t
register resoyrce managel

business method

|
business method

|

|

|

|

|

|

|

|

|

|

|

|

| afterBegin
|

|

|

|

|

|

|

|

|

|

e ——}
| |

—_—— ———

business method

Data Flow Diagrams (DFD)

« DFD

s document a process by documenting the

flow of data throughout the process.
» square external data source or sink
» arrow data flow
» circle process input data to output data
» parallel lines data store

system user Dty

manage user [D pinary ID

confirmation - 1~
1D confimt current ID

21-February-2003

cse403-14-Architecture © 2003 University of Washington 18

Why do boxes and lines persist?

Boxes and Lines are generally understandable and adaptable

. Negotiate to
Change A’s Publish 1, o55rm find common
form to abstraction ;. 40y form for A& B

B's form ©fA’s forr@

— B
o
Attach adaptor Introduce Provide B with @
or wrapper to A intermediate import/export Make B
form convertor multilingual

9| Maintain parallel consistent versions

Figure 4: Some mismatch repair techniques, from Garlan, Software Architecture

21-February-2003 cse403-14-Architecture © 2003 University of Washington 19

