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Readings and References

» References
» Software Architecture, David Garlan, CMU, 2001
* http://www-2.cs.cmu.edu/~able/publications/encycSE2001/

» A Practical Method for Documenting Software
Architectures, Clements, et al, CMU, 2002
+ http://www-2.cs.cmu.edu/~able/publications/icse03-dsa/
» Enterprise JavaBeans Specification, Sun Java Community
Process
* http://java.sun.com/products/ejb/docs.html
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Software Architecture

» The software architecture of a program or
computing system is the structure or structures
of the system, which comprise

» software components
» the externally visible properties of those components
» and the relationships among them.

From Software Architecture in Practice, Bass, Clements, Kazman, referenced in Garlan
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View

* The architecture of a system describes its gross
structure using one or more views

* Structure in a view illuminates a set of top-
level design decisions
» how the system is composed of interacting parts
» where are the main pathways of interaction
» key properties of the parts

» sufficient information to allow high-level analysis
and critical appraisal
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Uses of an Architectural Description

* Understanding

» Abstraction means that we can grasp the major
elements in a view and the rationale behind them

* Reuse

» Reusable chunks must be visible to be recognized,
extracted, generalized and reapplied to new areas

» Construction

» Some views provide a partial blueprint for
development - components and dependencies
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More Uses of an Architectural Description

* Evolution

» Expose the “load-bearing walls” of the design and
distinguish between components and connectors

* Analysis

» Consistency, performance, conformance
* Management

» Milestone: successful analysis of valid architecture
« Communication

» Stakeholders can prioritize explicit tradeoffs
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How to describe an architecture?

* “Boxes and lines” &

» graphical, adaptable, intuitive Tj’ >
G=

» traditional architecture description \

* Some issues
» meaning of the graphical symbols varies
» inconsistent or incomplete information

» difficult to formally analyze for consistency,
completeness, correctness

» constraints are hard to show, enforce
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Architectural Description Languages

» Formal notations for representing and analyzing
architectural descriptions

» Provide a conceptual framework and concrete
syntax for characterizing software architectures

» also provide tools for parsing, displaying, compiling,
analyzing, or simulating the architectural description

* Details of the ADL vary widely depending on
the intended application domain

» Like metrics - useful but judgement required for use
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Multiple views

» A key understanding is that multiple views of
the architecture are valid

» different stakeholders need to see different things

» different aspects of the system are best viewed
from different points of view

* Code-oriented views
» modular structure of the system, layers
» Execution-oriented views

» dynamic configurations, performance, reliability

Entities in an execution-oriented view
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System and Software Components
» hardware, programs, data blocks

Connectors

» mediate interactions among components

Configurations

» combinations of components and connectors

Constraints

» resource limitations, operating environment
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Enterprise Java Bean Examples

« This is the specification of the Enterprise JavaBeans
TM architecture.

» The Enterprise JavaBeans architecture is a component
architecture for the development and deployment of
component-based distributed business applications.

» Applications written using the Enterprise JavaBeans
architecture are scalable, transactional, and multi-user
secure.

» These applications may be written once, and then
deployed on any server platform that supports the
Enterprise JavaBeans specification.

Chap 3: Roles and Scenarios
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* Discusses the responsibilities of
» Enterprise Bean Provider (Aardvark, Wombat)
» Application Assembler (Wombat)
» Deployer (IT Staff)
» EJB Container and Server Providers (Acme)
» System Administrator (IT Staff)

 with respect to the Enterprise JavaBeans
architecture.
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Module view of deployed application
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deploved enterprise beans

ACME EJB Container
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. ACME EJB Server /

(c) Wombat’s application is deployed in ACME’s EJB Container at the ABC enterprise.

deployed
ISP pages

Payroll module
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ABC's ERP System

ABC's pension
plan application

6.2.2 What a container provides

The following diagram illustrates the view that a container provides to clients of session beans that pro-
vide local and/or remote client views. Note that a client may be a local client of some session beans and

a remote client of others

Client View of session beans deployed in a Container

container
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session bean 1

client
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Figure 21 Example of Inheritance Relationships Between EJB Classes
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A session object does not exist until it is created. When a client creates a session object, the client has a

reference to the newly created session object’s component interface.




Figure 8 OLD for session object at start of a mansaction.
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Data Flow Diagrams (DFD)

« DFD

s document a process by documenting the

flow of data throughout the process.
» square external data source or sink
» arrow data flow
» circle process input data to output data
» parallel lines data store

system user Dty

manage user [D pinary ID

confirmation - 1~
1D confimt current ID
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Why do boxes and lines persist?

Boxes and Lines are generally understandable and adaptable

. Negotiate to
Change A’s  Publish 1, o55rm find common
form to  abstraction ;. 40y form for A& B

B's form ©fA’s forr@

— B
o
Attach adaptor Introduce Provide B with @
or wrapper to A intermediate import/export Make B
form convertor multilingual

9| Maintain parallel consistent versions

Figure 4: Some mismatch repair techniques, from Garlan, Software Architecture
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