Architecture

CSE 403, Winter 2003
Software Engineering

http://www.cs.washington.edu/education/courses/403/03 w1/

21-February-2003 cse403-14-Architecture © 2003 University of Washington

Readings and References

e References

» Software Architecture, David Garlan, CMU, 2001
« http://www-2.cs.cmu.edu/~able/publications/encycSE2001/

» A Practical Method for Documenting Software
Architectures, Clements, et al, CMU, 2002

 http://www-2.cs.cmu.edu/~able/publications/icse03-dsa/

» Enterprise JavaBeans Specification, Sun Java Community
Process
 http://java.sun.com/products/ejb/docs.html

21-February-2003 cse403-14-Architecture © 2003 University of Washington

Software Architecture

* The software architecture of a program or
computing system is the structure or structures
of the system, which comprise

» software components
» the externally visible properties of those components

» and the relationships among them.

From Software Architecture in Practice, Bass, Clements, Kazman, referenced in Garlan

21-February-2003 cse403-14-Architecture © 2003 University of Washington 3

View

* The architecture of a system describes 1ts gross
structure using one or more views

« Structure 1n a view 1lluminates a set of top-
level design decisions
» how the system 1s composed of interacting parts
» where are the main pathways of interaction
» key properties of the parts

» sufficient information to allow high-level analysis
and critical appraisal

21-February-2003 cse403-14-Architecture © 2003 University of Washington 4

Uses of an Architectural Description

* Understanding

» Abstraction means that we can grasp the major
elements 1n a view and the rationale behind them

e Reuse

» Reusable chunks must be visible to be recognized,
extracted, generalized and reapplied to new areas

 Construction

» Some views provide a partial blueprint for
development - components and dependencies

21-February-2003 cse403-14-Architecture © 2003 University of Washington

More Uses of an Architectural Description

 Evolution

» Expose the “load-bearing walls” of the design and
distinguish between components and connectors

* Analysis
» Consistency, performance, conformance
 Management

» Milestone: successful analysis of valid architecture

e Communication

» Stakeholders can prioritize explicit tradeoffs

21-February-2003 cse403-14-Architecture © 2003 University of Washington 6

How to describe an architecture?

e “Boxes and lines”

» graphical, adaptable, intuitive

» traditional architecture description

* Some 1ssues
» meaning of the graphical symbols varies
» 1nconsistent or incomplete information

» difficult to formally analyze for consistency,
completeness, correctness

» constraints are hard to show, enforce

21-February-2003 cse403-14-Architecture © 2003 University of Washington 7

Architectural Description Languages

* Formal notations for representing and analyzing
architectural descriptions

* Provide a conceptual framework and concrete
syntax for characterizing software architectures

» also provide tools for parsing, displaying, compiling,
analyzing, or simulating the architectural description

* Details of the ADL vary widely depending on
the intended application domain

» Like metrics - useful but judgement required for use

21-February-2003 cse403-14-Architecture © 2003 University of Washington 8

Multiple views

* A key understanding is that multiple views of
the architecture are valid

» different stakeholders need to see different things

» different aspects of the system are best viewed
from different points of view

e Code-oriented views

» modular structure of the system, layers

 Execution-oriented views

» dynamic configurations, performance, reliability

21-February-2003 cse403-14-Architecture © 2003 University of Washington

Entities 1n an execution-oriented view

* System and Software Components

» hardware, programs, data blocks
e Connectors

» mediate interactions among components
* Configurations

» combinations of components and connectors

e Constraints

» resource limitations, operating environment

21-February-2003 cse403-14-Architecture © 2003 University of Washington

10

Enterprise Java Bean Examples

* This 1s the specification of the Enterprise JavaBeans
I'M architecture.

* The Enterprise JavaBeans architecture 1s a component
architecture for the development and deployment of
component-based distributed business applications.

* Applications written using the Enterprise JavaBeans
architecture are scalable, transactional, and multi-user
secure.

* These applications may be written once, and then
deployed on any server platform that supports the
Enterprise JavaBeans specification.

21-February-2003 cse403-14-Architecture © 2003 University of Washington 11

Chap 3: Roles and Scenarios

* Discusses the responsibilities of
» Enterprise Bean Provider (Aardvark, Wombat)
» Application Assembler (Wombat)
» Deployer (IT Staff)
» EJB Container and Server Providers (Acme)
» System Administrator (IT Staff)

» with respect to the Enterprise JavaBeans
architecture.

21-February-2003 cse403-14-Architecture © 2003 University of Washington 12

Module view of deployed application

4 N

Aardvark
Payroll

] _ Employee .
POy ABCPens
ServiceAdmin P];":II:MDH

deploved
JSP pages

N R
N .(:Pﬁlnmﬂuk :)
><Paymn module>

\A BC's ERP System

deployed enterprise beans
ACME EJB Container
A Web Server \ /
\M% J,/ _ ACME EJB Server Jj/

ABC’s pension
plan application

(c) Wombat’s application is deployed in ACME’s EJIB Container at the ABC enterprise.

21-February-2003 cse403-14-Architecture © 2003 University of Washington

13

6.2.2 What a container provides

The following diagram illustrates the view that a container provides to clients of session beans that pro-
vide local and/or remote client views. Note that a client may be a local client of some session beans and

a remote client of others.

Client View of session beans deployed in a Container

container

” N

P
EJBObjects

’//VC EJBHome)
K:-}ession bean 1

chient

),f"

_/

P
EJBLocalObjects

|
EJBL;:-calHﬂme)

L session bean 2 //I

Inheritance
Relationships

Figure 21 Example of Inheritance Relationships Between E1R Classes

Jirva. i, Reminte fava. lo Serializable

o Enmterprise
EJBMetqDaa EIBObiect E.'.'rfr,r}z'li.wﬂem.- JavaReans

Ilj'- ESBHone

SessionBeon

enterprise bean

provider
{(Wombat Inc.)
CariHome

il

CartBean
AcwmieRemoge container
. rovider
ArmeMetaDaia AcmeHome AcmeBean r:.ﬂ.\.'n:u.':-
pracduced by
. Acme tools
AcaeCariHome AcmreRenmateCart
AcmeCariMetaData AcmeCartBean

— = extends or implements interface

—= extends implementation, code generation, or delegation

Java fnrerfice Jova class

State Transition

client’s method on reference

Diagram
g generates NoSuchObjectException or
NoSuchObjectLocal Exception

~

does not exist
and
referenced

does not exaist
and
not referenced

A

release reference

object.removef),
home.create<METHOD = |" .)I' home.rem {)V.Eff'_ . }] \
system exception in bean,
bean timeout,

Container crash,
or

o bean timeout

oxists ~, handle.getEJBObject() exists
and and
referenced
release reference

Container crash

not referenced _

client’s method on reference

A session object does not exist until it is created. When a client creates a session object, the client has a
reference to the newly created session object’s component interface.

Figure § O1D for session object at start of a transaction.

container provided classes

Object Interaction
. chient EIB “EJB_ container session synchro- [instance transaction database
Dlagram (Local) - {Local) context Mization service

Home Object

javax.transaction. User Transaction. begin()
I

—

I
I
I
business method |
I
I

If the instance was passivdted it is deactivated
I I
|

naw I

registerSynchronization| synchrruizatimu

afterBegin

read someldata
_ I
register resoyrce manage
I
I
I
I

business method

business method
business method

—_—

Data Flow Diagrams (DFD)

 DFDs document a process by documenting the
flow of data throughout the process.

» square external data source or sink
» arrow data flow
» circle process mput data to output data
» parallel lines data store
system user —%‘
D contmaten current ID

21-February-2003 cse403-14-Architecture © 2003 University of Washington 18

Why do boxes and lines persist?

Boxes and Lines are generally understandable and adaptable

Negotiate to

Change A’s Publish 15, o550 m find common
form to abstraction 4o gy formfor A& B
B’s form ©f A’sfor
@ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 3 GJ
f -
B
Attach adaptor Introduce Provide B with \ @
or wrapper to A intermediate import/export Make B
form convertor multilingual

9 | Maintain parallel consistent versions

Figure 4: Some mismatch repair techniques, from Garlan, Software Architecture

21-February-2003 cse403-14-Architecture © 2003 University of Washington

