
LCO Milestone Review:

Antenna Ball Mayhem

Christian Bell, Thor Carpenter, Peter-Michael Osera
{cj, thorc, psosera}@cs.washington.edu

January 11, 2005

1 Abstract

Antenna Ball Mayhem (working title) is a concept for a web-based, video
game in which multiple antenna balls, all player controlled and affixed to a
car driven by a crazy driver, attempt to dodge and knock each other into on-
coming debris in last-man standing type competition. From a player standpoint,
the game offers simple, yet addictive gameplay that stands out from it’s web-
based peers in it’s direct competition model of gameplay. From a developer
standpoint, the game builds outward from a simple gameplay core that can be
easily extended to approach the quality of a AAA-quality game (e.g., graphics,
music, etc.), but does not require them to be fully realized. And from an investor
standpoint, such a game built on the web-based model naturally takes advantage
of the advertisement-based revenue commonly found in web-based games. This
combination of value makes Antenna Ball Mayhem a worthwhile endeavour.

2 Operational Concept

Our game concept draws upon the pre-existing user community of web-based
video games in the same vein as the games produced and hosted by companies
such as PopCap Games, MSN Games, and Yahoo! Games. The average user of
such a game is a “casual gamer”, one who plays easily accessible video games
typically rated “E for everyone”, in short bursts. Such a user plays these games
from an Internet-capable computer, not just at home, but also at work and
other technology-enabled areas when they feel the urge to do so.

Our concept, Antenna Ball Mayhem, draws on these features of the user
community to make a compelling experience for the player. In this game, the
player controls one of many antenna balls (of an arbitrary amount from tens to
perhaps even hundreds of player-controlled balls if feasible) affixed to the hood
of a moving car by antennae from a third-person perspective (rendered in a 2.5-d
style, scalable to full 3d if time allows) of his or her ball and the road ahead. The

1



driver of the car is a crazy individual who entertains himself by attaching his
collection of antenna balls to his car and driving around with reckless abandon
in an attempt to destroy said balls with flying debris, wreckage, and anything
other crazy things he finds in his travels. The player must preserve his or her
antenna ball by moving it out of the way of the flying objects, knocking his or
her peers into or away from oncoming debris.

This simple concept will appeal to the player with it’s combination of simplic-
ity, minimal system requirements (as is the norm with web-based video games),
and multiplayer competitive-cooperative gameplay previously untouched in this
sector of video games. And since this game is based on the established model of
web-based video games, investors can take time-tested approaches to this game
such as revenue-by-advertisement, whether that be within the game (flying Coke
cans) or outside of the game (traditional ad banners).

3 System Requirements

The essential Antenna Ball Mayhem concept supports the gameplay described
above which requires some sort of network play, either over a LAN or the Internet
and basic 2D graphics and sounds. From the publisher/developer perspective,
the game will require online distribution (i.e., bandwidth costs, staffing, sup-
port), either in the form of a simple client-server download in which the user
community is responsible for creation and hosting of game sessions (ala Quake,
Counter-Strike) or a more complex hosting service where the game is not only
distributed online, but a matchmaking service and game sessions are also hosted
online by the publisher (ala Blizzard’s Battle.Net, Halo 2’s matchmaking ser-
vice on XBox Live). From the client end, the nature of the game and the user
community implies that we target a minimum of computer requirements, so as
a rough estimation, we expect the client to have an Internet-enabled budget
computer from the last five years. Ideally, we could expand the game concept
to encompass multiple platforms (e.g., cell phones), but as a conservative es-
timation, Internet-enabled budget computers are a minimum. If play testing
proves it feasible we would like to support users with at least a 56kbps dial-up
connection.

In terms of reliability requirements, the player expects a seamless game expe-
rience, i.e., no crashing, responsive gameplay, consistent framerates, and little-
to-no “lag” given an adequate Internet connection. In addition to these basic
constraints on the game itself, the player will also expect developer maintenance
in the form of patches to fix gameplay issues and bugs. If a matchmaking/game
hosting service is undertaken, then the player will also expect that the service be
open and available all the time, barring maintenance-related downtime and acts
of God. Conversely, from the service-provider’s perspective, the matchmaking
system would need to be reliable insofar as it requires as little maintenence as
possible.

2



From this, we define a set of priorities that should be tackled in order when
realizing this game concept. First, the basic gameplay should be realized. This
involves the construction of a client and server with a simple game engine involv-
ing basic graphics, sound, and network play. In this manner, we can, throughout
the rest of development, ensure that the experience from the client is as seamless
and fun as possible. This will require performance analysis and gameplay test-
ing to ensure that the basic client and server meet this criteria. Once the client
and server are deemed to meet this criteria, then development can proceed to
other ventures. If a matchmaking service is undertaken, then that infrastruc-
ture is of next highest priority, which also needs to provide seamless gameplay
to the end-user. Finally, advanced graphics and sound assets can be added as
necessary to raise the quality of the game.

4 System and Software Architecture

We define one flexible approach to the implementation of this concept and
its rationale. We divide the system into two major components: the client
and the server. If we utilize a matchmaking service, then we introduce a third
major component, the infrastructure encompassing the matchmaking service.
Since one of the principal aims of this game is to be runnable everywhere, we
employ java as our target language for it’s native support across a wide variety of
platforms and it’s support for web-based distribution via JNLP and WebStart.
For ease of compatability, we also employ java to write the server software. The
matchmaking service can be implemented as a web-based interface with php
powered by a java servlet.

Roughly speaking, the server will be in charge of syncing all the clients (play-
ers), and the handling of non-client details such maintaining the world environ-
ment (spawning of objects, for example). The client will be in charge of graphic
and sound rendering and the transmission of the user’s input to the server. Also,
the server would like to off-load as much work onto the client as possible, such
as the handling of physics calculations and position, keeping a balance between
security and performance. The matchmaking service would keep tabs on known
servers to allow clients to query the service for available game sessions. The
result is a triangle-type interaction between the three major components of the
overall system.

In addition to these major components, game assets, graphics and sound,
need to be created. Off-the-shelf products can be used to create these assets
in parts (e.g., image programs, sequencers) but minimally, an in-house level
editor program will be required to unite these assets into a cohesive level. Also
of interest is the need for small benchmarking and monitoring assets such as
logging programs to allow for accurate analysis of the game by developers and
support staff.

3



5 Life-cycle Plan

There are two major classes of stakeholders for this concept. The first is the
“casual gamer” consumer, as described in the operational concept, that likes
simple, easy-to-access games, but is looking for a direct, multiplayer aspect
as well. The second is the investor, which we break further into two classes.
The first are the game publishers and content-providers of this genre of web-
based video games such as Popcap, MSN Games, and Yahoo! Games. These
companies are constantly looking for quality games to add to their libraries. The
second class of investors are advertising agents. This game is unique in that it
has a real-world aspect to it that allows for natural product placement such
as the flying debris including Coke cans, Wrigley gum wrappers, Toyota cars,
and so forth. This is in addition to the traditional banner-based advertisement
found on the mentioned content-providers’ websites.

To concretely describe a life-cycle plan for this concept, we break down the
plan into five principal questions:

• Why is this system being developed? To create a simple, addictive mul-
tiplayer game, targeted towards the casual gamer that is already part of
the established user community of web-based video games and the estab-
lished investors of this community - web-based game content providers
and advertisers.

• What will be done by when? We prescribe the following plan to execute
the development of the game assuming a six week period from initial team
organization to final release:

– Week 1: Detailed planning of system architecture - how do we break
the system down into manageable components; define protocols, in-
terfaces, abstractions

– End of Week 1: Milestone 1 - rough, malleable, “complete” plan of
system design

– Week 2: Assignment of components to smaller teams; design and
implementation of those components

– Week 3: Continued design and implementation of components cou-
pled with integration of components as time and need arise; light
development of content assets (graphics, sounds).

– End of Week 2: Milestone 2 - competition of individual components
– Week 4: Complete integration of components into a complete system
– End of Week 4: Milestone 3 - beta release
– Week 5: Evaluation of the beta release; bug fixing and heavy content

development
– Week 6: Continuation of bug squashing and content development

with heavy gameplay testing

4



– End of Week 6: Mile 4 - final release

In this plan, we spiral three times, once for planning, once for code devel-
opment, and once more for content development.

• Who is responsible for a function? Where are they organizationally lo-
cated? With a projected group size of eight to ten people, we expect to
assign two to three people on each component (such as the graphics en-
gine, level builder, etc.). With differing schedules, we except that much of
the group will work independently at home or in their small groups in the
labs. In light of this, we will require that the code and assets be located
on a mutually accessible cvs server.

• How will the job be done, technically and managerially? Technically, we
will employ the java programming language with other common tools as
agreed upon the group. Because of the scheduling problem, we also use a
wiki and instant chat programs for organization purposes. Managerially,
we follow the spiral model of development, with the spirals outlined in the
six week plan.

• How much of each resource is necessary? As described above, we expect
to assign two to three people on each major component, working at an
estimated two to three hours per day per week.

6 Feasibility Rationale

We identify two major risks with this proposal. The first is common with any
game: the concept may not fly in the marketplace. Even great games have a
possibility to fall to obscurity, a risk highlighted by the fact that our concept
relies on exclusive multiplayer gameplay to prosper. The second concerns the
project environment itself. The small time frame in which to execute the project
coupled with a group of people that most likely will not have the requisite
experience in the areas of graphics and networking is an object of concern.

However, as we have asserted above, the game concept is scalable to many
levels of complexity. The required gameplay mechanics and logistics are simple
enough to be executed in the given short period of time. This reduces the
second risk in twofold: the time required to implement the project is small and
consequentially the time invest is also small. The problem of unexperienced
programmers is mitigated somewhat by using Java which everyone is familiar
with. The first risk is unavoidable, but we feel that we have a compelling,
original game that people will enjoy. Furthermore, we have justified above that
there is a definite market whose value is worth the aforementioned risk. In this
manner, we believe that Antenna Ball Mayhem is a worthwhile project to invest
in.

5


