Chris Schlechty

Sarah Tachibana

CSE 403 Proposal


1. Operational Concepts

We propose a webapp for UW students which will greatly automate and improve the UW course registration process.  It will represent course-choosing in an interactive visual format, and will provide numerous conveniences the current system does not. At present, the users are required to search through a maze of confusing and disjointed pages to gather all available registration information, and they can easily miss something which would have an impact on their decision to take/not take a course. Our system will combine a number of features, such as course rankings, day-by-day geographic schedule maps, and more into one easy, fluid, comprehensive system that makes registration research simple.



2. System Requirements

The user is first presented with the following interface: a large, blank grid in their browser window with timeslots and five days of the week, not unlike the visual schedule output currently available. This is the Visual Schedule Panel.  Next to this on the right is the List Panel.  Initially, this panel consists of some dropdowns/text fields, the Populate button, and an empty text box.  Here students can begin to build up a "potential classes" list that they will pick and choose out of to build their schedule. 

The dropdowns/text fields ask for the student's input in the following categories: the student's major and/or prospective major, their "interest keywords," any departments of interest, and the course name and number of any course(s) they are already interested in taking this quarter.  After submitting this info, the student presses the Populate button.

At the push of the Populate button, the large text box in the List Pane gets filled with potential classes in accordance with the submitted info. See System and Software Architecture for more specifics on how this is done.

Now the action shifts to the Visual Schedule Panel.  The student starts by clicking any class in the List Panel.  That class appears on the VSP as a "ghost"--that is, it is blocked out in a semitransparent color. If there are multiple possible sections of the class, multiple ghosts appear, with some kind of indication that they are duplicates.  If the class has quiz sections, multiple ghosts appear to indicate the possible quiz sections, and similarly for labs. The user can add as many ghost classes from the List Panel as he or she wants like this.

At any point, the user has the option of "locking" a class, i.e. clicking it and making it turn opaque. Clicking again unlocks it, making it a ghost again.  The purpose of ghosting and locking is to allow the user to experiment with schedule conflicts.  Two ghosted classes on the VSP can overlap.  Two locked classes cannot.  When the user tries to lock the second class, a warning will occur. 

In this way, the user can fluidly, quickly, and intuitively experiment with scheduling.  Two problems remain: providing easy access to other course information and the mapping of the class layout for a given day.

When a potential class is displayed to the user, a course ranking will appear next to the title of the course, based on the course instructor's student evaluations.  An extra information link will also be present. When clicked, the link will cause a pop-up to appear, showing the user the course description, full course title, more specific ranking breakdown for the instructor, and the rating of other courses the instructor has taught.

At the bottom of each day in the VSP, there will be a "map this day" button.  If they click this button, a computer generated map will appear with markers on the building locations indicating their classroom locations. Next to each marker, a time stamp will also appear that shows when the user needs to arrive at and leave each location.  This will allow the user to easily visually judge whether getting from class to class with their current schedule is feasible or not.

Below is one possible arrangement and look for the GUI. This version is a simplified view of what the user will see depending on features implemented, but it displays the desired structure for the user interface. 
[image: image1.jpg]Generate

Other
buttons/text
boxes

Courses including
sln, title, rank, etc

Th





Visual Schedule Panel








List Panel

3. System and Software Architecture

Our system will be broken up into Model, View, and Controller in accordance to common software engineering practice.

MODEL
Our model will consist of a database which contains all courses offered by the UW in the current quarter, including all relevant course information connected with these, such as the professor, professor rating, start/end times, etc.  For this we will be implementing a SQL database.  We will regularly crawl the course listings, professor rankings, etc. from the university so that our database always has the latest information.

The course database will also contain whether the course is currently listed in the List Panel, whether the course is currently on the VSP, and whether the course is currently ghosted or locked.

VIEW
The view component will generate the user interface described above in the browser window
in accordance with the controller's commands, and will pass along user input to the controller for it to decide what to do with.  The view will be generated and dynamically refreshed using ATLAS, Microsoft's ASP.NET-compatible version of AJAX.

CONTROLLER
Control will be written in ATLAS, and will be responsible for crawling for database updates,
interpreting clicks in the browser and updating the database accordingly, determining schedule conflicts, etc.  One important function of Control is the population of the List Panel when the Populate button is pressed.  It works as follows: 

A DARS is performed on the selected major, and all courses indicated by the DARS as not yet completed and whose prerequisites the student has already fulfilled are put on the list.  The course catalog is searched for the provided "interest keywords," and any course whose description includes them is put on the list.  All courses from any department of interest are put on the list.  Finally, any specific course the student wanted added is put on the list. 


Crawling will be done fairly straightforwardly, just iterating through the databases and extracting information using regular expressions.


4. Lifecycle Plan

This project will be executed using a staged delivery plan, delivering a limited but useable application at each phase, building the most important functionality first.  The first phase will be the implementation of the GUI with a list pane, a VS pane, and schedule blocks which can be added and removed by clicking on a sample list of courses in the list pane.

The second phase will focus on building the backend crawling mechanisms and populating the database.  The third phase will be writing search algorithms to populate the List Pane from the course database.  The fourth phase will be implementing ghosting, course info pop-ups, map function, etc.

Six to eight engineers are required for a project of this scale, ideally with expertise in web-crawling, ASP.NET, ATLAS, and/or databases.  To meet each milestone goal, they can divide up their time however they like.


5. Feasibility Rationale

This project is ambitious, but also builds upon a lot of previously existing functionality provided by the existing UW system.  As such, it can provide a lot of bang for its buck with not unreasonable effort.  The major risks lie in the building and interpretation of the course database for this project.  Certain tasks such as parsing and interpretation of the DARS, analyzing prerequisites, etc. could prove tricky, and some of these features may need to be trimmed down while preserving the basic objective of this program, which is to be an easy, visual-based way to plan schedules.

We are making the assumption that it is possible to crawl and populate a database on this scale, and that it is possible to divide work up into model view control, because we do not have extensive experience with either web-crawling or ATLAS.

We were initially planning a more complex mapping feature which listed the exact routes to and from classes and their exact distances, but realized this would be too big a task for a one-quarter project.  We were also considering some sort of "planning for the future" feature which shows paths that can be taken later if a given schedule is chosen, but that was also way too abstract and complex.


