Course Schedule Builder

By:

Xu (Ellen) Xu

Brian Watanabe

Sharon Lin

Operational Concepts

Due to the large variety of courses being offered at the University of Washington, students must choose from hundreds of possible course combinations each registration period to find their perfect schedule. Current course search tools on the UW website, such as the General Requirements search and Schedule Finder, are helpful. However, they give students very limited control over their search. In addition, results are returned in text form, so it is difficult to visualize how different courses might fit together. With these current methods, it could take hours of manual searching to find a set of courses that are all interesting and do not conflict.

We present the Course Schedule Builder. The purpose of our project is to make course scheduling more intuitive by creating a system that allows UW students to build their schedules visually and have greater control over search criteria (using keywords, time ranges, etc). Our target customers are UW students, especially those who do not have specific courses in mind. However, if the Course Schedule Builder turns out to be a successful way of planning courses, it can be extended to work for other colleges and universities in the future.

Also, although this tool may be helpful for visualizing a weekly schedule, the focus of our project is on course planning. We are not trying to create a site for planning general events or social gatherings.

System Requirements

The Course Schedule Builder can be divided in two main components, an interactive schedule display and a course search feature. The schedule display is a timetable of the user’s schedule in progress, where users can experiment with course combinations and see how they fit together (see Figure 1). By right-clicking the course blocks, users can view more information about the course or remove it from their schedules.

Users will be able to search for courses to add to their schedules by specifying criteria such as keywords, time range, number of credits, department, prerequisites, and course level. Since courses can meet at different times during the week, users can specify time ranges by highlighting timeslots in their visual schedule. In addition, in their profile, users can input courses they have already taken and configure the search to return only those courses for which they meet the requirements.

There are two main ways we can allow users to input completed courses. One option is to have users manually enter them in a form. Manually entering courses would result in high initial work overhead for users, depending on the number of courses they have already taken. Another option is to have users upload their unofficial transcript. This costs the user much less work. However, this method will also require our system to be able to process and extract information from the transcript. We will need to decide which method to pursue when teams are formed.

Courses meeting the search criteria will be returned in order of relevance. Users can simply click on a course in the result list for more information or choose to add the course to their visual schedule. Because schedule planning can span several browsing sessions, users will be able to save their current schedule and continue later.

In addition to these essential elements, there is a possibility for the Course Schedule Builder to include more features, such as allowing users to rate professors and courses and share their ratings. Since students might have many courses they’re interested in and want to experiment with more than one schedule at a time, it would be nice to add support for tagging courses and saving multiple schedules so that users can easily swap between alternatives.

[image: image1.png]user interface

Ioad schedule /- save schedule /
searchresuts search for course

v

qery /mlin - |— sgareh for curse frmaton * /—

g L retiev all course nbrmaton * UW wekste

+ [
Ioa/save sl
store course iformation *

| v
dtbase mareger/
dtbase

< depenting on chosen method o rlmertein

Summary Table

	Priority
	Feature

	Essential
	Interactive visual schedule

	
	Add/Remove courses

	
	Course search (keyword, time, credits, level, quarter)

	
	Save and resume

	
	Input Prerequisites

	Medium
	Course ratings

	
	Tagged courses

	Low
	Undo/Redo

	
	Multiple schedules

	
	Additional result sorting

System and Software Architecture
The plan for our project is to have a web interface where the customer will build their schedule. There is also the thought that some customers may prefer a downloadable desktop application, and this will be looked into, but a web-based interface is very conveniently accessed from any location.

[image: image2.jpg]Visual Schedule

Spring 2007
Monday | Tuesiay | Wednosday | Thursday | Friday
csEaT3A csEaTsA csEana
EEE 037 EEB 037
I\ | Usersconnarrw
their search by
selecting time ranges
for when they want to
have ciass
CsEas1 A
BAG 1S4
CSE461 4B,
234
SAV1ss |HUM203A L
KNE210.
HUM203 AR
oug 102

Profile New Schedule Change Schedule

Tagged Courses

Spring 2007

software, engineering

The basic parts of our project consist of a user interface and a database. Users will edit their schedule and be able to save it to the database for future viewing and editing. The information about each course is essential to our project, and a decision will have to be made whether to access this information directly from the UW website or to store the data in the database. The issue with accessing the information directly will be performance, especially if there is high traffic in the UW system. On the other hand, the course information gets updated frequently around registration time, and to store all the course information in the database would require updating the database quite often, which would also be inefficient. This must be addressed early in the project, once the other tools and languages are decided upon.

For the database, a SQL or mySQL database manager will be straightforward. It would be nice to pair mySQL with PHP, since they go well together, but there are also many other options for the language, such as Java or the .NET framework, which could be more or less effective based on the composition of the team.

Lifecycle Plan

The development lifecycle we will use is close to staged delivery or the spiral model. We will deliver a release of the product after each milestone and the subparts of the product after each stage. We will focus on the most important features and continue with the additional ones. While each team member should contribute in every aspect and stage of the product development, we will split the team members into four different roles according to their main responsibility:
· Program Manager (1 person): in charge of the product design doc. He or she will do the requirement analysis and cost estimation. The program manager will work with the project manager closely to come up with the schedule and milestones. He or she will be responsible for communicating with the developers on the implementation.

· Project manager/documentation specialist (1 person): setting milestones, monitoring the project progress, communicating with the team about the schedules and coordinating the resources. He or she will work with the program manager on communicating with UW. Although every member will produce his or her own documentation, the project manager will drive this effort by acting like a documentation specialist and constantly check the documentation status with other team members. He or she will make sure the documentation is in a central place available to everyone and remains up-to-date.

· Developers (3-4 persons): the developers will take charge of implementing the product, which includes the database, user interface, search function, etc.

· Testers (2-3 persons): testers will write the test cases to test the developers’ code constantly and aggressively. They will also perform the integration testing as the project goes along.

Our schedule/stages will look like this:

· 2 weeks – Implement the search function and basic GUI
· Contact UW about possible usage of the course database

· Do some research in order to decide the ways to implement the search based on the most important criteria

· Finalize the criteria users can specify in order to narrow their search

· Make the basic GUI and implement basic search functions (i.e. users can do the keyword search and specify the time range they wish to have the class)

· Begin testing

· 1 week – Web development
· Design and implement and implement the database to store individual user information

· Improve the visual schedule

· Improve the GUI

· 1 week

· Implement additional features

· 1 week

· Test all the features

· Finalize all the documentations

Milestones:

May 10th: beta release

May 30th: final release

Feasibility rationale

Having a website which has a back-end database and front-end, password-protected user interface is a standard practice. There are various ways to implement our search function, such as connecting to an existing database through API, which is also quite common. In addition, there are some similar UW course searching tools and visual schedule builders already, such as UW’s General Requirements Search (http://www.washington.edu/students/timeschd/genedinq.html) and Bitman’s Schedule Builder (http://bitman.freeshell.org/schedulebuilder.php).
Separately, these tools are limited. However, it should be feasible to combine and extend features from both these tools to create one intuitive, schedule-building portal, which is what our project strives to do.

We are making some assumptions that UW will coordinate with us on this project. In the best case, we might be able to learn more about how current course search tools are implemented on the website and perhaps do something similar. If not, we may need to directly search through the time schedule websites. For our project, we also assume that course searches and visual schedule presentations are helpful and appealing to students.

Our project also has some risk. At least right now, our team members are not very experienced in running a large software project. There might be a learning curve as we decide more specifically what technology to use. It is also possible that there will not be enough time to implement all of our proposed features. We have already eliminated some of the proposed functionality such as finding the shortest distance between two consecutive classes in the schedule and automatic email alerts when any course information like enrollment, location, or instructor) has been changed.

Figure 1: A possible idea for the Course Schedule Builder interface. Here the user is specifying time ranges to search in.

PAGE
5

