CourseForge

Chris Schlechty, Kenneth Kuan, Scott Clifford, Guanyu Chu, Kansu Dincer, Sarah Tachibana, Andy Hou

CourseForge
Chris Schlechty, Kenneth Kuan, Scott Clifford, Guanyu Chu,

Kansu Dincer, Sarah Tachibana, Andy Hou

System Design Specification and Planning Document
Draft 1.09
April 25, 2007
CSE 403 - CSRocks Inc.
Revisions

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	1.09
	All
	Initial draft.
	04/25/07

System Architecture
1. Introduction

CourseForge relies on a LAMP architecture. User and course information is stored in a MySQL database, which is accessed via AJAX XMLHttpRequest calls to PHP functions which make queries and convert the result to XML. The XML data is parsed and put on screen via Javascript/DOM modification. The database itself is populated using both data given to us by UW, as well as data collected using a Java screen scraper to parse professor ratings information.

The modular breakdown of CourseForge follows: prior to interacting with the scheduling system, users must login. The Login module manages authentication, new user registration, and password recovery. The rest of the interface is represented through a Student module, which contains a VisualSchedule and a Search module. The VisualSchedule module manages individual Tabs, while the Search module handles queries and addition of courses to the schedule.
2. Implementation view
[image: image1.jpg]Javascript XMLHttpRequest) 1. Save

2. Query
AJAX
¢) 3. Register

HTML

-~
XML

1. Visual Ul
2. Conflict Handling

PHP
1. Courses Table
css @ 2. Users Table

Java uw
Screen Scraper Course Database

*

Professor Ratings

3. Design view - UML class diagram
[image: image2.jpg]Class UML

Login

password

ogiin usermame I pasvord)
nowlser()
rotrevePW(in username)

Tab

ourselit
blockList

addCourse(in course]

VisuaiSchedule delelcCourse(in course)
BT 77 |HoatCoursein course)
curreniTaty frahas{Course(in course)
0Course CouEe) [+getCourselnfoin course)
addTab(in tabiD) addBlock(in ime)
deleteTab(in course)
loadTab(n abiD) 1
o
[rwegisert)
[rsavet) Course
- 0
3 description
courseList Lsin ™
FFauerytin aueryiior mes
f+getCourselnio(in course) 0.0 hyearAndQuarter

addCourse(in course)

sGhosted

4. Process view – UML sequence diagrams
[image: image3.jpg]Use Caset
Enter query and present results

Studen Obiect SearchResult

Login Oect

SearchCaurse

Use Case?
‘Add a course and lock it

login

LockCourse

5. Database Schema

[image: image4.jpg]CourseSchedule student
PK |sin
FK1 [branch password
FK1 |year credits
FK1 [atr major
FK1 | dept
FK1 | number
name section_id
min_atr_credits major_enrol
max_qtr_credits credi_this_quarter
max_credits final_xam_dt S
fee_amount final_exam_start
indiv_and_soc. final_exam_end PKFK1
wiiting le——| final_exam_buiding | g—— PK,FK2
ast final_exam_b_no PK
vipa start_time
english end_time
foriegn_lang pm_flag
natural_world building
gen_elective room
honors
evening
long_description
hasTaught
FK1 | vear
FK1 |qtr Instructor
FK1 |dept instructs
FK1 | number PK |id
FK1 | branch > <
FK2 |id name
ik url K1 [sin
detail_eval rating K2 |id

6. Design Alternatives and/or Assumptions
We considered a few alternative representations and implementations of CourseForge before settling on the current version with our customer. These included:

· Information Gathering: We weren’t originally sure whether UW would provide us the course information necessary to implement our system, so we put thought into a screen scraper module that would periodically parse the online course catalog. This would of course be more inconvenient, but for the time being UW has given us a copy of a quarter’s worth of course information. We assume that, should CourseForge see widespread use, UW will continue to give us access to the necessary information

· Schedule Representation: Given the limited screen estate available to us, we tried to think of other ways to represent the visual schedule. One was have a separate graph for each day. Times would be aligned horizontally, and each row would consist of a class, with a horizontal bar representing that class’ duration. However, this view doesn’t allow for a holistic week view, and students are presumably already used to the day-per-column view used in the current Visual Schedule, which we decided to stick with.

General assumptions for this architecture include:

· We assume that Javascript, AJAX, and PHP will all support our object-oriented design. Javascript in particular is a more procedural language, and may require extra effort to fit into the rest of the framework.
· We assume that Google Web Toolkit will provide us with coherent modules to piece together. GWT makes creating AJAX applications much easier, but depending on the resulting modules, it may be difficult to test and/or modify in the future.
Development Plan
1. Team Structure

Courseforge will be divided into three main teams for the work up to the beta release: test team, AJAX team, and serverside/database team. There is member crossover between teams, and the serverside/database team will all be assimilated into the other teams once their work is complete.

The test team is responsible for unit testing, user testing, and system testing, though everyone is expected to run prelim tests on their own code. This team is composed of: Kansu, Scott, Kenneth, and Andy. The AJAX team is responsible for java coding, HTML, CSS, and other UI-related features. It is composed of: Scott, Kansu, Andy, and Kenneth. Finally, the database team is responsible for the PHP coding and the setup/maintenance of the database. It is composed of: Chris and Guanyu. Chris is primarily database; Guanyu is primarily PHP.
2. Project Schedule

	Milestones
	Date
	Team Member(s)
	Tasks Involved

	1. Initial SRS Completed
	4/17
	All
	· Produce an overall description of CourseForge.

· Create use case diagrams (formal 2x and a Visio).

· Produce a rough feature list.

· Create an UI prototype diagram (2x).

	2. Initial SDS Completed
	4/25
	All
	· Produce system architecture diagrams and descriptions.

· Devise and document a development plan:

· Team structure, schedule, and risk analysis.

· Produce a test plan and documentation plan.

	3. Basic UI framework with

 their documentation done
	4/27
	Ajax Team

“

“

“

“
	· Read and learn basics of AJAX, HTML, and CSS.

· Learn the basics of the Google Web Toolkit.

· Design module frameworks using AJAX:

· Modules: CourseForge (main container), schedule pane (container), search, results, tab, and course.

· Internal (code level) comments completed.

	4. UI Framework Testing done
	4/30
	Test Team
	· Paper prototyping.
· Basic usability testing.

· Use cases for modules.

	5. Usable Database
	4/30
	Chris, Andy
	

	6. Search/Results functionality

 with its documentation done
	4/30
	Ajax Team

Guanyu

Ajax Team

“

“

“

“
	· Code a query script to request information from database when search is performed.

· Code a PHP script to handle a query via UI and to format data returned from the database in XML.

· Code an XML data interpreter to translate database query results into JavaScript course modules.

· Code a script to generate a (tree) formatted course list based on the course modules from the XML interpreter.

· Code a script to add a course from the results list to schedule pane.

· Internal (code level) comments completed.

· External (user level) help documentation completed.

	7. Search/Results functionality

 testing completed
	5/2
	Test Team
	· Subsystem testing conducted simultaneously with periodical builds.
· Unit testing for each module.

	8. Ghosting/Locking and all

 other beta features specified

 in SRS completed with

 their documentation done
	5/8
	Ajax Team

“

Andy

All

All
	· Script ghosting and locking features for tab and course modules.

· Script a dialog pop-up feature for course modules in the schedule pane and results pane in order to show course information and extra modifiers for a course module.

· Code a Java object to scrape the UW server for course schedules and professor information.

· Internal (code level) comments completed.

· External (user level) help documentation completed.

	9. Beta features testing done

	5/10
	Test Team
	· System testing conducted simultaneously with periodical builds.
· Unit testing for each module.

	Beta Release
	
	
	

	10. Tabbing, custom block, and

 add code functionality with

 their documentation done
	5/13
	Ajax Team

“

“

All

All
	· Complete the functionality of the already in place tab module.

· Create a new type of block object for the “Busy” blocks.

· Extend the dialog pop-up feature module to the registration event with add code options.

· Internal (code level) comments completed.

· External (user level) help documentation completed.

	11. Testing for milestone ten

 functionality completed
	5/15
	
	· System testing conducted simultaneously with periodical builds.

· Unit testing for each module.
· Usability testing with live subjects.

	12. Save schedule, register,

 and results organizer

 functionality along with

 their documentation done
	5/20
	Ajax Team

Guanyu

Ajax Team

Guanyu

Ajax Team

All

All
	· Create a script to send an auto-save query back to the database with schedule pane information.

· Code a PHP script to handle the auto-save information from the schedule pane.

· Create a script to send locked class information on the current tab back to the database for registering.

· Code a PHP script to place the locked classes into the registered section of the database.

· Create a script for sorting the results list by alphabetical order, department, or credit type.

· Internal (code level) comments completed.

· External (user level) help documentation completed.

	13. Testing for milestone twelve

 functionality completed
	5/23
	All
	· System testing conducted simultaneously with periodical builds.

· Unit testing for each module.

	14. CourseForge final testing
	5/27
	All
	TBD

	15. Begin work on stretch

 Features
	5/27
	TBD
	TBD

	16. Testing for stretch features

 Completed
	5/30
	Test Team
	TBD

	Final Release
	
	
	

3. Risk Assessment
	Risk
	Chance of occurring (High, Med, Low)
	Impact if it occurs (H,M,L)
	Steps taking to increase chance it won’t occur
	Mitigation plan should it occur

	Steep learning curve for PHP, AJAX, etc.
	Med
	High
	Start familiarization with languages early
	Collaborate, so those with expertise can help those without it

	Inappropriate design due to unfamiliarity with languages
	High
	Low
	Mockup initial design with fluidity in mind
	Change design as needed

	Large group size leading to insufficient communication / slipups on deliverables
	Med
	High
	Instituting “early-warning” rule if a group member cannot deliver his/her work on time
	Other members should pitch in if they have slack time; member having trouble should identify specific tasks others can help with

	DARS parsing may not be possible due to access and/or legality issues
	High
	Low
	Inform customer group of this risk
	Cut the feature

	Auto-register

feature may fall through due to

dependence on UW system
	Med
	Low
	None
	Cut the feature, and instead give users info so they can manually register

Test and Documentation Plan

1. Test Plan

1. Unit test strategy

· Unit tests will exercise the modules.

· We will establish an artificial environment in which the module can live and then invoke the routines of the module. We will consider a test passed only if the module satisfies its predetermined behavior.

· Unit tests will be run every time a developer wishes to add/update the module to the repository.

2. System test strategy

· This type of testing will be used to test the functionality of the subsystems and the overall system.

· The tests will highly depend on the use cases prepared for development.

· System tests will be run once after every build.

3. Usability test strategy

· With the usability tests, we aim to test the ease and efficieny with which our product can be used.

· We will use both the prototypes and the actual product tested by real people from within the target audience.

· Prototype testing will be (and to some extent has been) employed during the early design stages. Product testing will be accomplished once for the user interface and once more with nearly full product functionality (beta?).

4. The client-server nature of the product and the variety of tools used bring up an additional challenge for the testing team. The scarcity of the tools available to test dynamic content such as JavaScript (AJAX in particular) on the client end is another obstacle. High source code coverage will be our goal.

5. We will use bugzilla for bug tracking purposes. The developer / tester who employs the unit testing will post a bug report to notify the rest of the team about the bug.

2. Documentation Plan
There are two types of documentation we would like to provide which correspond to strictly internal use and internal/external use.

The internal documentation, which only developers will view, will consist of bug tracking, source control, and code comments. We will track bugs using Bugzilla, and we will use Subversion for source control.

The code comments will be produced as modules and components are coded. The idea behind this is to write comments while the code written is fresh in the developers mind. This way, the developer may give better explanations of their code. Also, if another team member would like to edit or understand a component, having the comments their immediately allows for easier understanding and the team members do not necessarily have to explain their code verbally if something is not clear (provided the comments are adequate).

The conventions that we will use for commenting is as follows:

1. Header/Overview Description of Components

a. Title of the component.

b. Brief overview of the component.

2. Function Explanations

a. Short explanation of functionality.

b. List of parameters if applicable.

c. Return value if applicable.

3. Inline comments

a. Used at the developers discretion for clarity.

The internal/external documentation will serve as a reference for both developers and users of the system. This will allow for a centralized source of documentation so that two forms of documentation (one for developers and one for users) will not need to be updated when changes are made.

These documents will be written in the form of help guides for the CourseForge system. The goal is to make them much like the “Help” guides you would find in any standard program these days. The documents would be accessible via a “Help” link on the system UI.

The help guides will be formatted as follows:

	Help Topics

· Ghosting Courses

· Locking Courses

· Adding Courses

· Search Features

· Etc…
	How to Lock a Course

<documentation>

Finally, we will write an installation guide which will describe the process of installing our project on a personal server.

