
SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

SuiteRates

Sung Tat Kwok
Brian Stone

Vadim Tkachev
Christopher To
Giles Westerfield

Tim Wong

System Design Specification and
Planning Document

Draft 1
25 April 2007

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

CSE 403 - CSRocks Inc.

Revisions

Version Primary
Author(s)

Description of Version Date
Completed

1 Sung Tat
Kwok, Brian
Stone, Vadim
Tkachev,
Christopher
To, Giles
Westerfield,
Tim Wong

First draft. 04/25/07

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

System Architecture

1. Introduction

The SuiteRates system architecture is composed of three components: the Ruby on Rails web service,
the MySQL database, and the client front-end. Clients can connect to the SuiteRates service via a
web-browser, which will interact with the Ruby on Rails web framework located on the server. This
web framework will then interact with the MySQL database, storing or retrieving information as
necessary.

1. Design & System Architecture View

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

2. Process view - Use Case Sequence Diagrams

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

1. Database Schema

See class diagram. The database tables will be identical.

Development Plan

1. Team Structure

Our team structure is displayed below in the table. All team members will be assigned a specific
role that they are responsible to oversee and manage. However, since our team is small and we
only have a limited amount of time to develop the SuiteRates service, all team members will be
expected to contribute with both the development and testing of the code and user interface.

Name Role Responsibilities

Sung Tat Kwok
Database Architect
Lead Tester

- will oversee the design and development of the database schema
- will manage the database throughout the project to make sure
everything is running smoothly
- will develop test plans and test cases to test both the server code
and the client user interface on the web-browser

Brian Stone UI Architect
- will design and develop a fluid and intuitive user interface
- will design and conduct usability tests ranging from surveys to
observing customer behavior

Vadim Tkachev UI Architect
- will design and develop a fluid and intuitive user interface
- will design and conduct usability tests ranging from surveys to
observing customer behavior

Chris To Graphics Designer
- will develop the graphical features of the user interface, such as
icons, logos, and color schemes

Giles Westerfield Lead Developer

- will oversee and manage the development of the code
- will make sure that the team is sticking to the designed system
architecture
- will make sure each developer knows their responsibilties

Tim Wong Program Manager

- will organize and coordinate weekly meetings and coding
sessions
- will act as a communication proxy between our team, our
customers, and CSRocks
- will make sure the team is on track with upcoming internal and
external deadlines
- will provide support for team members to bring up any issues

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

2. Project Schedule

SuiteRates has both internal and external deadlines. Internal deadlines are deadlines within our
team that act as checkoff points to continually keep the team on track so that we won't fall
behind. External deadlines are those imposed by CSRocks. The following is a list of the
combined internal and external deadlines for this project.

Alpha Release (internal) - May 5
Beta Release (external) - May 10
Gamma Release (internal) - May 20-22
Final Release (external) - May 30

Our feature list is presented below, along with the corresponding release time that we plan to have
completed that particular feature. It is difficult to assign a specific feature to a team member who
would be responsible for that feature, since many of our features depend on the functionality of
other features. Thus, we have attempted to resolve this issue by scheduling weekly coding
sessions, where the team can get together and code. While we don't necessarily need to code as a
group, and will most likely be working independently or in pairs, coming together for weekly
coding sessions will allow the team to quickly and easily communicate amongst each other. We
feel that by providing this open communication support framework, all team members will
understand their own responsibilities and can quickly benefit from the support and knowledge of
their peers as problems arise. The Program Manager and Lead Developer will work together to
manage and delegate the responsibilities of developing particular features amongst the team.

Feature Release

Separate accounts to track users
independently

Alpha

Users can create or join “households”
which have shared expenses

Alpha

Verification process to determine whether a
given user is allowed to join a household
(other roommates must accept newcomer)

Alpha

Add an expense to be paid by certain
roommates, with a deadline and individual

weights for each roommate

Alpha

Add recurring household expenses that are
shared between certain roommates

Alpha

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

Household message board for public
communication

Beta

Send private messages between users Beta

Optional email reminders for upcoming
expense deadlines

Beta

Two-way debt payment verification (both
parties must agree that money was

exchanged properly)

Beta

Transaction history for individual users and
households

Beta

User profiles with personal information Beta

Minimal GUI Beta

Calendar view of coming expense deadlines
for individual roommates and the

household as a whole

Gamma

Contact mechanism to send email to site
developers/tech support

Gamma

Polished GUI Gamma

Final, reliable product—customer tested Gamma

Documentation/Help/FAQ pages for users
and developers

Final

“Smart Balancing” – If user A owes user B
$10, and user B owes user C $10, the site
updates the debt to show that user A owes

user C $10, effectively turning two
transactions into one

Final

Different privacy settings depending on
user preference

Final

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

PayPal support for online transactions Stretch

SMS reminder Stretch

Scan-able recipe (pdf) Stretch

Export personal transaction history to excel Stretch

3. Risk Assessment

Our team's risk assessment is displayed in the table presented below. We feel that we have
covered a broad set of risks that will allow us to understand the project as a whole, and drive
our team to success.

Risk Chance of
occurring (High,
Med, Low)

Impact if it occurs
(H,M,L)

Steps taking to
increase chance it
won’t occur

Mitigation plan
should it occur

Most members
have little to no
experience with
Ruby on Rails,
which could hold
back
development time

Low High All team
members reading
and researching
RoR and playing
on own cubist
account

All should be able
to pick it up
quickly. Giles
has past
experience with
RoR, so is our
team's Ruby guru.

Unexpected
scheduling
conflicts, no team
organization and
communication

conflicts: med

organization +
communication:
low

Med Keep good
communication
amongst group
members,
constant update
on google groups
and wiki of team
status, centralized
svn repository,
PM to coordinate
and manage team
members to work
well together

identify areas that
team member was
responsible for
(based on
wiki/team status
+ google groups),
load balance the
work among
remaining
available
members

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

Insufficient
design and
planning,
jumping straight
into development

Low Med-High Spending time
brainstorming,
designing, and
planning
fundamental
architecture
before any coding
is started.
Documenting all
design processes
before we begin
so everyone
understands what
to do. Keep good
internal and
external
communication to
make sure we're
all on the right
track.

Team members
should not make
design and
architecture
assumptions that
could potentially
throw off other
members.
Consult PM for
final decisions,
who can mediate
between other
members of the
team. If we find
ourselves
jumping into
development
without sufficient
planning, take
steps back to
reevaluate as a
group.

Attempting to
implement too
many features for
final release
(being
overambitious)

Med High Stick to SRS
feature list to stay
focussed on the
essential features
that need to be
done. Any new
features can be
added as a
stretch, to be
implemented in
the future after
final release, but
a significant time
should not be
spent on the
design and
planning of these.

Go back to the
SRS feature list,
and see where we
stand. Realize
that this project
can be forever
ongoing, and that
it's important to
first implement
several features
well, then
continue

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

Neglecting the
importance of our
customer

Med High PM to organize
weekly meetings
with customer to
address UI and
design issues,
customer needs
and requirements,
and to retrieve
any other
feedback. Keep
constant
communication
with customer, so
that we can
develop our
product to fit the
customer's needs.

Scheduling
weekly meetings
and keeping in
touch via email
will insure that
we have constant
communication
between the
development
team and our
customers. If this
should fall
through (due to
scheduling
conflicts), we can
devise online
usability feedback
surveys that our
customers can
take on their own
time.

Test and Documentation Plan

1. Test Plan

Overview

Testing will ensure the correctness, security, and quality of our service. The testing will be divided
into different parts, namely: unit testing, integration testing, and usability testing.

a. Unit Testing

 Unit testing is the foundation of all the other forms of testing in the testing plan. If the individual
components in our system architecture do not work by themselves, they will not work well together. It
is very important to test thoroughly how all the modules use and interact with each other throughout
the system. Our unit tests will be written for all the methods and classes that have interaction in the
new feature. The testers will write test methods that make certain assertions about code, working
against a test fixture. A bunch of these test methods will be bundled up into a test suite that can be run
easily by a developer when needed. The tools that we will use to develop our testing framework are:

− Ruby Unit Testing Framework

− "Web Application Testing in Ruby", or Watir for short: Watir is a free, open source functional

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

testing tool for automating browser-based tests of web applications. The advantage is that Watir
drives the browser the same way people do, automating link clicking, filling in forms, and
pressing buttons. Watir also checks results, such as whether expected text appears on the page.

In addition, tests will be written for each newly discovered bug. This will ensure that new fixes and
features do not have undesired effects on existing code and also isolate potentially recurring software
defects.

b. Integration Testing

Integration testing determines whether the major subsystems that make up the project can work and
play well with each other. It acts as an extension to unit testing.

General use cases will suffice for the smoke test. The test plan will be drawn from the specification
document to ensure that the product successfully encompasses all the features of each component
along with component integration. The ACID properties of our database transactions will also be
tested. The database will be populated with arbitrary data to represent user information. This can be
done by loading a script into MySQL to generate arbitrary data. The benefits of using sample data are:

− easy to observe whether user information are processed correctly by the server and client
front-end

- ability see whether there are any dirty-reads raised by other users, or by faulty server code

c. Usability Test Strategy

Usability testing is different from the other types of testing discussed above. It is performed with real
users, under real environmental conditions. The criteria to testing will be in terms of human factors. In
this part, we will ask several ‘users’ to experience our system. After the testing, we will provide them
with a survey to see whether the system meets our project goals and fit our customer's needs. It is
important to know whether there are any misunderstands during requirements analysis that needs to be
addressed and the software is user-friendly to keep our customers happy.

d. Bug tracking mechanism and plan of use

We will utilize the BugZilla bug tracking management software to track defects and features in our
software project. This will allow us to keep track of every issue, assign issues to certain team mates,
and determine what issues are unresolved and resolved.

2. Documentation Plan

User Guide

The user guide will be a hyperlink within the website. This will be a formal and complete
documentation to guide the user in how to use this system to its fullest capabilities. This
documentation will provide the specifications which are required to support the product, and will

SuiteRates
Sung Tat Kwok, Brian Stone, Vadim Tkachev, Chris To, Giles Westerfield, Tim Wong

fully describe features of the product from the perspective of the users. Demonstrations are also
essential in the user guide, allowing users to follow demonstrations via videos or screenshots on
the webpage links.

Admin Guide

This will be documentation for internal use. It will include the following:

− Setting up and running the system

− Configuration of the system which details the software and hardware requirements

− Design view of the system

− Description of design components.

− Maintenance

Quick and Dirty Guide

This documentation sums up the main features of the system which allow users to use the product
quickly and fairly effectively without reading the User Guide. In other words, it will be an outlined
version of the User Guide. Users probably spend 5 -10 minutes to read through the document.

Help Pages

Help pages will be a frequently asked questions (FAQ) section to address common user issues. The
team will collect common users’ problems found during usability and other types of testing.
Furthermore, this help section will be continually updated to address customer concerns, by
allowing customers to provide feedback and questions.

Additional resources

The group can use the team Wiki page to track current progress. The Wiki page is open to the
public so that other people are also able to know the flow of the development. In addition, this
document will post the evaluation of the product and its progress, such as design decisions,
administrative decisions, and recommendations for future releases.

