UTalk Team

UTalk

System Design Specification and Planning Document
Draft 1
04/25/07
CSE 403 - CSRocks Inc.
Revisions

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	0
	UTalk Team
	First Draft
	04/23/07

	1
	UTalk Team
	Final Document
	04/25/07

System Architecture
1. Introduction
The architecture of UTalk is divided into two major domains: client and server. The client domain is a web browser and the server domain is a web application. The web architecture incorporates the Microsoft web-service standard that runs on top of a .NET platform. The ASP.NET web application is hosted on an Internet Information Service (IIS) server which is connected to a Microsoft SQL database for data storage. In addition to the basic web architecture, UTalk uses an open source web chatting component called Jabber that is connected at the back-end of the web application. Jabber is a chat protocol that uses a client/server model to communicate messages between users during a chat session.

Upon a client page request, the IIS server will invoke the web application, which will then dynamically generate the page content based on any validation or information from the Microsoft SQL database. After credential validation, the backend establishes a Jabber client connection to a Jabber server which initiates the chat room stream. After initializing the Jabber connection, any subsequent chat messages will be handled and dispatched by the Jabber server. To further illustrate the UTalk architecture, the following sections show the deployment view, the design view, two sequence diagrams for two use cases, and the database schema.

2. Deployment View
Figure 1 presents the deployment view for the UTalk system with the hardware topology supporting the UTalk system. There will be multiple users who will use network connections to send requests from their own personal computer nodes to two servers. The first is a database server which will store their login names and passwords, the groups they are part of and their locations. The second is a chat server which will allow the users to communicate with one another in real time. Both these servers will be hosted on the IISQL server (specifically //iisqlsrv/cse403/UTalk).

Figure 1. UTalk Deployment View
3. Design View

Figure 2 presents the UTalk UML class diagram to illustrate the major modules and interactions in the UTalk system.

[image: image1.emf]Third Party Application

UTalk Front End

UTalk Chat Client

UTalk Chat Server

UTalk Database Module

-uid : int

-username : string

-password : string

-email : string

-permission : int

-groupList : List<Group>

«implementation class»User

-pid : int

-gid : int

«implementation class»

Location

+InsertUser(in user : User) : int

+UpdatePassword(in user : User, in password : string) : int

+UpdateLocation(in location : Location) : int

+AttachGroup(in member : Membership) : int

+DetachGroup(in member : Membership) : int

+AuthenticateUser(in user : User, in password : string) : int

+QueryUserGroups() : Group

+QueryAllGroups() : object

+QueryLocationByGroup() : Location

+InsertGroup(in group : Group) : int

+InsertLocation(in location : Location) : int

+DeleteUser(in user : User) : int

+DeleteGroup(in group : Group) : int

+DeleteLocation(in location : Location) : int

-SQLConnection : SQLConnection

-command : SQLCommand

-connectionString : string

«implementation class»DBAgent

-pid : int

-gid : int

«implementation class»Membership

-gid : int

-name : string

-lastUsed : int

«implementation class»

Group

**

1

*

1

*

*

1

*

1

+EstablishConnection() : int

+ReadCallback(in IAsyncResult ar)

+Send(in data : string)

+SendCallback(in IAsyncResult ar)

+Stop()

-streamParser_OnStreamStart(in object sender, in Node e)

-streamParser_OnStreamEnd(in object sender, in Node e)

-streamParser_OnStreamElement(in object sender, in Node e)

+ProcessIQ(in IQ iq)

+ProcessRosterIQ(in IQ iq)

+SendOpenStream()

+Send(in Element el)

-streamParser : StreamParser

-m_Sock : Socket

-buffersize : int

-buffer : byte[]

XmppServerConnection

+CloseServer() : bool

+CloseConnection(in userName : string) : bool

+BlockUser(in userName : string) : bool

-QueueEvent(in Event event) : bool

+SendMessageToUser(in IQ iq) : bool

+AddUserToGroup(in userName : string, in groupName : string)

+BroadcastToUsers()

+GetOnlineRoster() : object

-currentConnections : HashMap

-eventQueue : Queue

-workerPool : ThreadPool

-statusLog : string

-dbAgent : DBAgent

XmppServer

0..*

1

1

1

+LoginUser(in email : string, in password : string)

+RegisterUser(in username : string, in email : string)

+ChangeUserPassword(in username : string, in old_password : string, in new_password : string)

+AddUserToGroup(in userName : string, in groupName : string)

+SetUserLocation(in username : string, in latitude : int, in longitude : int)

+SendMessage(in message : string, in user : string)

+ReceiveMessage(in message : string, in user : string)

-sessionID : int

-chatSession : XmppClientConnection

WebFrontEnd

+AssembleLoginPage()

+AssembleRegisterPage()

+AssembleSettingsPage(in userName : string)

+AssembleChatroomPage(in userName : string)

+AssembleLocatorPage(in userName : string)

+AssembleAdminPage(in userName : string)

+SearchGroups(in query : string)

-dbAgent : DBAgent

WebBackEnd

+LoginUser(in userName : string, in password : string)

+SendMessage(in message : string, in user : string)

+ReceiveMessage(in message : string, in user : string)

GenericJabberClient (Gaim)

+LoginUser(in userName : string, in password : string)

+SendMessage(in message : string, in user : string)

+ReceiveMessage(in message : string, in user : string)

«interface»JabberClient

0..*

0..*

1

1

1

0..*

Figure 2. UTalk Design View

The UTalk Database module details the database interactions. The DBAgent class handles actual queries to the database and has associated User, Group, Membership, and Location data classes. DBAgent communicates to the outside world via the WebBackEnd module and the UTalk Chat Server Jabber implementation module. The web server needs information from the database to construct ASP pages, handle user registrations and provide an index of groups the user can chat with. The web server also makes use of the database to authenticate user logins and maintain which groups a user is allowed to communicate with (users can potentially be blocked from groups by the administrator). The Jabber server itself maintains a set of XmppServerConnections, each of which connects to a client's XmppClientConnection. The WebBackEnd handles the XmppClientConnections for UTalk. Note the presence of a third party application implementing the JabberClient interface on the UML diagram. The Xmpp protocol allows any Xmpp compliant third party chat client to interact with our system.
4. Process View

This section uses UML sequence diagrams to illustrate the two major use cases in the UTalk system.

Use Case 1: User creates a new account

Figure 3 shows the sequence of method calls and modules involved in a new account creation. When the user clicks on the register button, it invokes the RegisterUser method of the DBAgent class implementing a SQL query. After the new user is added to the database, the web front-end/UI displays a message to indicate success.

[image: image2.emf]WebFrontEnd

User

DBAgent WebBackEnd

RegisterUser(username:string, email:string)

new

InsertUser(user:User)

success

success

Display message

Figure3. UTalk Use Case 1 Sequence Diagram
Use Case 2: Chat with a group
Figure 4 shows the sequence of method calls and modules involved in a chat session. First the user logs into the website by providing an email and an associated password, then the web back-end authenticates the user by checking credentials against the database. After the user is authenticated, the UI redirects to the PageLoad method of the web back-end chat room page. The PageLoad method determines all the existing groups and establishes a new Jabber client connection for the user. After the chat room page is loaded, the user clicks on a group tab to chat with that particular group. Upon group tab selection, the web back-end adds the user to the chat group and gets a list of online group members. Once the chat session is established, the user can send messages by clicking on the Send button. The Jabber server will handle the broadcasting of the messages.

[image: image3.emf]WebFrontEnd

User

DBAgent WebBackEnd

LoginUser(email:string, password:string)

new

AuthenticateUser(user:User)

success/failure

success/failure

PageLoad()

QueryAllGroups()

List<Group>

JabberClient

new

Store Jabber Client

LoginUser(username:string, password:string)

SelectTab()

XmppServerConnection XmppServer

EstablishConnection()

success

success

AddUserToGroup()

GetOnlineRoster()

OnlineRosterList

OnlineRosterList

ClickSendBtn()

Send(msg:string)

Send(msg:string)

Send(msg:string)

BroadcastToUsers()

Figure4. UTalk Use Case 2 Sequence Diagram
5. Database Schema
The database schema for UTalk is shown in Figure 5. There four tables total that capture the storage requirements. The main users table stores all the user-specific information, and the groups table stores all the group-specific information. The location table stores all the building locations on campus and the lid (which stands for location id) is referenced by the location attribute in the users table. Similarly, the member table contains two attributes, uid and gid, which are foreign keys into the users and groups tables respectively, describing a user’s membership in a group.

[image: image4.jpg]users (dbo) member (dbo)

7 udt
| password o
fpo—oq |

permission
location

groups (dbo)

location (dbo)

[gw

Figure 5. UTalk Database Schema

6. Design Alternatives and/or Assumptions
One alternative considered for the web architecture besides the Microsoft centric approach adopted by UTalk is the LAMP model which uses a web platform consisting of Linux, Apache, MySQL, and PHP. This architecture option was rejected in order to bypass a high learning curve for our team, since none of our team members have web development experience on the Linux platform. We believe that choosing the Microsoft web architecture model on the .NET platform will be more efficient since some team members have had exposure to ASP.NET as well as MS SQL databases.
On the web chatting component side, one alternative considered outside of Jabber is the dnChat open source program that enables a web-based chat room communication. dnChat relies on remote-scripting using java script to update the conversations in real time without refreshing the page. However, there is no standard protocol that is being used to handle the chat sessions. The decision to incorporate Jabber in the UTalk project instead of dnChat is based in the fact that Jabber because it defines a standard protocol to handle the communication between the client and the server. This enables the UTalk architecture to isolate the modules in a way that would allow plug-ins instead of hard-coding everything around a specific program. Using Jabber enables the UTalk architecture to be more scalable and adaptive to future enhancements.
Development Plan
1. Team Structure

The UTalk team structure is summarized in Table 1. Team members have assigned roles, but they are also expected to help teammates in any areas of need where time and expertise allow them to do so. All team members are expected to contribute to fixing problems and bugs.
Table1. UTalk Team Structure
	Name
	Role
	Responsibilities

	Daria Craciunoiu

Back-up:

Candy Chiang
	Project Manager
	· Coordinate team operation and team deliverables
· Keep team members connected (meetings, email)
· Keep team connected with customer and CSRocks Inc.
· Ensure adequate support in terms of development environment and tools (IIS server, database account, etc.)

· Integrate team documents

· Write database code

	Candy Chiang
Back-up:

Ting-You Wang
	Architect
	· Design project architecture

· Provide code infrastructure

· Integrate code modules

· Write code for web back-end

	Jack Hebert

Back-up:

Erica Tam
	Developer
	· Write code for Jabber server

· Write code for web embedded Jabber client

· Provide Jabber related documentation

· Write code for people locator

	Erica Tam

Back-up:

Jack Hebert
	Developer
	· Write code for Jabber server

· Write code for web embedded Jabber client

· Provide Jabber related documentation

· Write code for people locator

	Ting-You Wang
Back-up:

Candy Chiang
	Developer
	· Write code for web front-end / web back-end
· Create installation package

· Write installation guide
· Integrate code modules

	Chun-Yeh Chen

Back-up:

Mark Perry
	Tester
	· Unit testing

· Integration testing

· Test documentation

· Report bugs in bug database and monitor test database for final quality assurance

	Mark Perry

Back-up:

Chun-Yeh Chen
	UI Designer
	· Design UI
· Write code for web front-end
· Collaborate with customer for usability testing

· Create Help tutorials for UTalk users and administrators

In order to insure forces can be effectively redistributed in case of emergency, the UTalk team has a back-up system: every person is paired up with someone with similar responsibilities. The back-up person needs to take over the responsibilities of their peer if the peer is either incapacitated (e.g. illness), or unreachable (e.g. hiding from the team before a deadline).

2. Project Schedule

The UTalk project schedule is constructed to meet the Beta and Final release milestones defined by CS Rocks Inc. The project is developed on a staged delivery plan where incremental functionality is added to the prototype produced in the previous stage at every iteration.
Table2. UTalk Project Schedule
	Date
	Milestone
	Tasks

	4/9 – 4/29
	Phase 1 development and testing
	· Server, client, database, and Jabber connection infrastructure

· Alpha UI including login, signup, chat, and settings pages

· Single chat session with multiple users

	4/30
	Alpha Prototype
	Alpha prototype integrating UI with backend infrastructure

	4/30 – 5/9
	Phase 2 development and testing
	· New user account creation

· Email authentication upon new user account creation

· Change user password

· New chat groups creation

· Multiple active chat sessions

· Select/deselect groups in group list

· View a list of online people in each chat room

· Optional location registration upon login

· Beta people locator to indicate campus location of group members

	5/10
	Beta Release
	Beta prototype implementing multiple chat sessions

	5/10 – 5/29
	Phase 3 development and testing
	· Select/deselect groups to view member location in people locator page

· Final UI
· Final People Locator
· Administrator access control

· Authorized removal of active users/groups

	5/30
	Final Release
	Final release ensuring consistent and reliable user experience

All team members are involved in each phase of development and testing, having different responsibilities determined by their role, as underlined in the previous section. Developers are assigned ownership over specific code identified in their responsibility descriptions, while integrations and testing need to be performed in parallel with the development.
3. Risk Assessment

The top five software development risk areas are outlined in Table 3, along with an analysis of our prevention and recovery strategies.
Table3. UTalk Project Schedule
	Risk
	Chance of occurring
(H, M, L)
	Impact if it occurs (H,M,L)
	Steps taking to increase chance it won’t occur
	Mitigation plan should it occur

	Jabber
(communication protocol not working/too complicated)
	M
	M
	· Assign two of the experienced developers to do early research

· Study alternatives (dnChat) in parallel
	· Use dnChat because it is a simpler application

	ASP .Net Progress
	M
	H
	· Study and experiment early

· Peer programming with an ASP experienced developer

· Insure designated ASP developers have a trained and informed back-up
· Limit new technology use to ASP by constructing the rest of the project around known Microsoft tools like C# and MS SQL
	· Use JavaScript to substitute dynamic page generation
· Add another developer to focus on ASP if current structure does not yield desired results

	Integration
	L
	H
	· Architect first to establish major modules and interactions
· Integrate early
· Integrate often
· Perform integration testing
	· Revise interfaces for the modules involved
· Cut features that require complex integration

	Unachievable schedule
	H
	H
	· Schedule commitments were made after understanding requirements
· Staged delivery determines partial functionality for every release
· Active project tracking with bi-weekly deadlines insures schedule slips can be detected early
	· Re-estimate schedule over the course of the project
· Cut features based on customer input if necessary

	Team Coordination
	M
	H
	· Multiple communication channels (wiki, mailing list, phone)

· Centralized accountability and coordination (Project Manager)

· Collective accountability and coordination (peer back-up system)
	· Redistribute responsibilities within the team

· Appeal to the course staff for conflict resolution

Test and Documentation Plan
1. Test Plan
The unit tests will ensure the quality of each UTalk module in isolation by testing the methods of all major classes. The projected UTalk unit tests will verify the following modules maintain the correct input/output contracts defined by their interfaces:

· DBAgent
· WebFrontEnd

· WebBackEnd

· XmppServer

· XmppServerConnection

Frequent regression testing will be conducted by running the unit tests for all existing code to make sure that new additions or modifications do not breach contracts in the system as a whole. The tests will be developed through NUnit, the unit-test framework for all .Net languages. The method for testing development involves both black box testing and white box testing depending on the suspected vulnerabilities of the system.
The system tests will ensure three main aspects of the system quality: performance, security, and reliability. Performance testing will identify the areas of the system that are inefficient in their implementation and are creating significant delay in response to user actions. Security testing will probe user actions that can breach secure features of the website such as login. Reliability testing will probe the connections between the different modules of the system and ensure interactions are carried out as defined in the system specifications. The reliability tests will also cover the different aspects of the user experience with the UTalk website and simulate use cases like account creation, login, chatting, changing settings, and group creation. System tests will run after all the unit tests for modules involved have completed successfully. The tests will again be developed through NUnit.

Usability is the third stage of the UTalk testing process that encompasses a customer oriented set of tests. No automated techniques can be employed to simulate user reaction to the UTalk UI. Analysis and observations must be done by direct interaction with the customer. Before entering usability testing, the systems must pass all unit and system tests. Observing the customers interact with the UTalk website and conducting surveys will be the main tools for identifying problem areas in the UI design and the set of features. Usability testing will be scheduled at every major milestone, allowing the UTalk team to understand customer feed-back and incorporate customer requests in the implementation.
The test strategy is known as the Nightly Smoke Test. The UTalk team based the test strategy adequacy assessment on previous success recorded by the Nightly Smoke Test in the industry. Every night the latest version of the project will be checked out and built, and then unit and system tests will be run against the project automatically (instead of manual testing). The team will be provided with a fresh error report every morning, and it will save time on running the tests and waiting for the result. The dedicated tester can focus on writing the test code and setting up the daily testing routine instead of manually running tests every day.
The bug tracking mechanism is centered around the well established application Bugzilla. Bugzilla allows user to report, view, and track bugs in different stages of resolution. All team members will have access to the system and be responsible for fixing bugs assigned by the Project Manager.
2. Documentation Plan

The UTalk user documentation aims to simplify the adoption and learning process for the software product. To meet this goal, the main UTalk page will link to a Help page providing an online usage manual for standard users. The website administrators will have a personalized portal where a set of administrator restricted access control features will be integrated along with all the standard features. The Help page for website administrators will contain added information about using the access control features.
UTalk server administrators will also be provided with documentation in the form of an installation guide Readme file to accompany the installation package. The documentation for all internal and external developers consists of clear and concise comments within the code. Class diagrams and a database schema will be available on the project wiki to clarify the design view.
Chun-Yeh Chen�Candy Chiang�Daria Craciunoiu�Jack Hebert�Mark Perry�Erica Tam�Ting-You Wang

User Computer nodes (Web Browser to log in with)

Network Connections

Incoming requests

Server Nodes on IISQLSRV

Server Responses

SQL Database Server Node

Jabber Chat Server Node

_1239037052.vsd
WebFrontEnd

User

DBAgent

WebBackEnd

LoginUser(email:string, password:string)

new

AuthenticateUser(user:User)

success/failure

success/failure

PageLoad()

QueryAllGroups()

List<Group>

JabberClient

new

Store Jabber Client

LoginUser(username:string, password:string)

SelectTab()

XmppServerConnection

XmppServer

EstablishConnection()

AddUserToGroup()

Send(msg:string)

success

success

Send(msg:string)

GetOnlineRoster()

OnlineRosterList

OnlineRosterList

ClickSendBtn()

Send(msg:string)

BroadcastToUsers()

_1239037088.vsd
RegisterUser(username:string, email:string)

new

InsertUser(user:User)

WebFrontEnd

User

DBAgent

WebBackEnd

success

success

Display message

_1239036730.vsd
System

-uid : int
-username : string
-password : string
-email : string
-permission : int
-groupList : List<Group>

«implementation class»User

-pid : int
-gid : int

«implementation class»
Location

+InsertUser(in user : User) : int
+UpdatePassword(in user : User, in password : string) : int
+UpdateLocation(in location : Location) : int
+AttachGroup(in member : Membership) : int
+DetachGroup(in member : Membership) : int
+AuthenticateUser(in user : User, in password : string) : int
+QueryUserGroups() : Group
+QueryAllGroups() : object
+QueryLocationByGroup() : Location
+InsertGroup(in group : Group) : int
+InsertLocation(in location : Location) : int
+DeleteUser(in user : User) : int
+DeleteGroup(in group : Group) : int
+DeleteLocation(in location : Location) : int

-SQLConnection : SQLConnection
-command : SQLCommand
-connectionString : string

«implementation class»DBAgent

-pid : int
-gid : int

«implementation class»Membership

-gid : int
-name : string
-lastUsed : int

«implementation class»
Group

*

*

1

*

1

*

*

1

*

1

+EstablishConnection() : int
+ReadCallback(in IAsyncResult ar)
+Send(in data : string)
+SendCallback(in IAsyncResult ar)
+Stop()
-streamParser_OnStreamStart(in object sender, in Node e)
-streamParser_OnStreamEnd(in object sender, in Node e)
-streamParser_OnStreamElement(in object sender, in Node e)
+ProcessIQ(in IQ iq)
+ProcessRosterIQ(in IQ iq)
+SendOpenStream()
+Send(in Element el)

-streamParser : StreamParser
-m_Sock : Socket
-buffersize : int
-buffer : byte[]

XmppServerConnection

+CloseServer() : bool
+CloseConnection(in userName : string) : bool
+BlockUser(in userName : string) : bool
-QueueEvent(in Event event) : bool
+SendMessageToUser(in IQ iq) : bool
+AddUserToGroup(in userName : string, in groupName : string)
+BroadcastToUsers()
+GetOnlineRoster() : object

-currentConnections : HashMap
-eventQueue : Queue
-workerPool : ThreadPool
-statusLog : string
-dbAgent : DBAgent

XmppServer

0..*

1

1

1

+LoginUser(in email : string, in password : string)
+RegisterUser(in username : string, in email : string)
+ChangeUserPassword(in username : string, in old_password : string, in new_password : string)
+AddUserToGroup(in userName : string, in groupName : string)
+SetUserLocation(in username : string, in latitude : int, in longitude : int)
+SendMessage(in message : string, in user : string)
+ReceiveMessage(in message : string, in user : string)

-sessionID : int
-chatSession : XmppClientConnection

WebFrontEnd

+AssembleLoginPage()
+AssembleRegisterPage()
+AssembleSettingsPage(in userName : string)
+AssembleChatroomPage(in userName : string)
+AssembleLocatorPage(in userName : string)
+AssembleAdminPage(in userName : string)
+SearchGroups(in query : string)

-dbAgent : DBAgent

WebBackEnd

+LoginUser(in userName : string, in password : string)
+SendMessage(in message : string, in user : string)
+ReceiveMessage(in message : string, in user : string)

GenericJabberClient (Gaim)

+LoginUser(in userName : string, in password : string)
+SendMessage(in message : string, in user : string)
+ReceiveMessage(in message : string, in user : string)

«interface»JabberClient

0..*

0..*

1

1

1

0..*

UTalk Database Module

UTalk Chat Server

UTalk Chat Client

UTalk Front End

Third Party Application

