Washington Administrative Sustainability Tracking Engine

WASTE Team

Washington Administrative Sustainability Tracking Engine

Samuel Van Dalfsen

Andrew Hemmaplardh

Kevin Huang

Ruibo(Ray) Li

Ryan McElroy

Carrie Olmstead

Sandy Pratt

System Design Specification and Planning Document

Draft 1.0

April 21, 2007

CSE 403 - CSRocks Inc.

Revisions

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	1.0
	Entire Group
	First initial draft
	04/21/2007

System Architecture

·
·
·
·
1. Introduction

Washington Administrative Sustainability Tracking Engine (WASTE) is a web application that will be used by government employees to record sustainability data in a centralized location. Different features will be available to users based on what permissions they have been granted by the system administrator. Users without administrative or aggregating privileges will only be able to edit and view data for their department. Users with aggregating privileges will be allowed view data from all departments and generate repots on all data. Administrators will be able to add/delete users, modify user permissions, and add/delete fields to be stored.

The centralized location for data storage will be a SQL database accessed through C# code called from an ASP.net page. The database and the application will run on a Windows Server running IIS. The ASP.net and C# code can be partitioned based on the tasks the users are performing. There will be a common login form for all users that, based on the permissions of the logging in user, may lead to forms for data entry, report generation, or user/data management. Associated with each of these forms will be code that is responsible for communicating with the database to retrieve the necessary information or make the requested changes to the database.
2. System Architecture Diagram

Figure 1 presents an overview of the main system components and their association with a user who has specific privileges.

[image: image1.emf]MS IIS Server

SQL Database

Web Application -C# and ASP.net

User

Reporting

Form

User Reporter

Chart

Generator

Administrator

Data

Verification

Data Entry

Form

Data Entry

Form

Admin Form

Login Form Login Form Login Form Login Form

Report

Generator

Data

Verification

User/Data

Management

Data

Manipulation

Data

Manipulation

Schema

Manipulation

Figure 1: WASTE System Architecture
3.
4. Design view
5. Figure 2, below, covers the class breakdown of the WASTE project. A user session is represented as a SustainabilityContext, which will interact with various forms depending on what the user is doing. The ReportGenerationModule, ManagementModule, DataValidationModule, and DatabaseWrapper classes are static classes, which provide the Form classes a means to interact with the database. The User class provides both an abstraction for a user, and a method for login validation.
6.
[image: image2.emf]+login(in username, in password)

+logout(in username)

+setCookie()

+getCookie()

+loadForm(in type)

-user : User

-sessionID/Cookie

-currentForm

SustainabilityContext

+validateuser(in username, in password)

-username

-password

-userType

User

+loadForm(in Form Type)

+updateForm(in Form Data)

-formData : Form

DataInputForm

+ReportRequest(in reportType)

+displayReport()

-reportData : Form

-Graph

ReportRequestForm

+GenerateReport(in Report Details)

-rawReportData

-convertedReportData

ReportGenerationModule

+AddToDatabase(in Database Connection, in data)

+SQLQuery(in Database Connection, in Query)

-sqlQuery

-connectionInfo

DatabaseWrapper

+ValidateData()

-formData

-convertedFormData

DataValidationModule

1

0..1

1

0..1 1

*

1

*

+diplayUsers()

+addUser(in name, in Pswd Hash, in UserInfo)

+updateUser(in username, in User Info)

+removeUser(in username)

-userList

AdminForm

1

0..1

+getUserList()

+updateUserList(in User List)

+getMeasureList()

+updateMeasureList(in Measure List)

ManagementModule

1

*

1

1

1 1

1

1

1 1

*

*

1

0..*

Figure 2: WASTE Class Breakdown
7. Process view
Figure 3, below, is the sequence diagram for the use case wherein a user with reporting privileges attempts to generate a report. The user first requests a report through the request form. The request form passes the report details to the report generation module which is responsible for getting the appropriate information from the database and returning it so the form may display the report.

[image: image4.emf]Web User Report Request Form Report Generation Module Database

Request Report(Form object)

GenerateReport(Report Details)

SQL Query(Field1, ..., Field N)

Data for Report(DataSet)

Formatted Page

Chart Generator

GenerateChart(xvals, yvals, axes, colors, etc)

Generated Chart

Formatted Report

Figure 3: The Report Aggregation Process
Figure 4, below, is the sequence diagram for the use case where user attempts to save data. Once the user clicks the button to save the data, the data input form has the data validation model check for possible errors. If the data validation module finds no errors it will communicate with the database to insert the validated data and get the inserted data to pass back to the form for the user to verify.

[image: image5.emf]Web User Data Input Form Data Validation Module Database

Input Data (Form object)

Validate Data (Field1, ..., FieldN)

Newly Inserted Data (DataSet)

Success, data or DB Error

Success or Error condition. New Data

Invalid Data Error

AddToDatabase(Validated Field)

AddToDatabase(Validated Field)

Request View

{OR}

Figure 4: The Data Entry Process
8. Database Schema

Our database schema involves five tables (see figure 5). Following is an explanation of what each table is responsible for storing:
· Categories - categories for which a set of measures is associated
· Measures - names of fields that a user save data for
· Units - units of measure that a user may associate with measure
· Departments – the departments each user must be associated with
· Users – information on the users that may log in to the system
· Tracking – the data entered for all departments, measures and years

[image: image7.emf]Departments

PK id

full_name

short_name

domain

Categories

PK id

name

description

Measures

PK id

FK1 category

name

description

Units

PK id

name

type

ratio

Tracking

PK,FK3 department_id

PK,FK1 measure_id

PK year

value

unknown

FK2 unit_id

Users

PK id

username

password

FK1 department_id

admin

reporter

Figure 5: The WASTE Database Schema
9. Design Alternatives and/or Assumptions

10. Due to the customer requirements, the architecture is based upon the Microsoft .NET framework, IIS, and SQL Server. Specifically, due to the capabilities present on the development server workstations, we have access to the following software:

11. .NET >= 2.0

12. SQL Server 9.0.3054

13. IIS 6.0
14. The application will not need to scale to large server loads, because the application is targeted only to a relatively few government employees appointed to report the sustainability data for their department. This vastly simplifies the application design by relieving the developers of most optimization and scaling issues.
Development Plan

1. Team Structure

The initial team structure will be broken into the following roles: Project Manager, Back-end/Database Developer, Front-end/Web Interface Developer, Documentation Writer, and Customer Developer.

The Project Manager will be responsible for coordinating between team members, maintaining the project pace, and ensuring that all group members stay on task with their assigned responsibilities. The Project Member will also be responsible for communicating with CSRocks Inc. leaders and ensuring both unit and system tests are occurring regularly.
The Back-end and Database Developers will be responsible for developing the software utilized by the WASTE system that does the work of processing data and saving the data to the database. They will be primarily working with C# and the SQL Server.

The Front-end/Web Interface Developers will be responsible for developing the interface that the users see. This will involve programming the web page, and the correct queries to be passed to the back-end. There will be close cooperation between the back-end and front-end to ensure that integration of the project is achievable.

The Documentation Writer will be responsible for writing the documentation for the project, which includes developing guides, requirements and specifications for the developers. The Documentation Writer will work closely with the customer to ensure that development proceeds according to customer specifications.

The Customer Developer will interface with the customer to determine requirements and release betas. This role will also include helping with development as needed when not busy with customer-related tasks.
 The team will be assigned to as such:
	Tasks/Assignment
	Team Member

	Project Manager
	Carrie Olmstead

	Back-end/Database Developer
	Ryan McElroy

	Back-end/Database Developer
	Sandy Pratt

	Front-end/Web Interface Developer
	Samuel Van Dalfsen

	Front-end/Web Interface Developer
	Kevin Huang

	Documentation Writer
	Ruibo Li

	Customer Developer
	Andrew Hemmaplardh

2. Project Schedule

The schedule in Table 1 is a rough estimate of the overall schedule for the WASTE project. Major tasks that must be completed for the successful release of the product are listed along with expected completion dates and release dates. Definitions are as follows: “Official Beta” means 90% - 100% working, additional clean up may be made but is not explicitly scheduled. “Static Demo” means that the feature may work but only works with pre-defined values, such as test values. “Release Beta” means that the feature is most likely 100% working, barring unexpected bugs and errors. “Final Release” means the final release for the product to be delivered to the customer.

Table 1: WASTE Project Schedule
	April 22 - April 28
	Sunday
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday

	Design Architecture
	
	
	
	Foundation
	
	
	

	Web-Form Generation
	
	
	
	
	
	UI Design
	

	Saving to Database
	
	
	
	
	
	Initial Coding
	

	Loading from Database
	
	
	
	
	
	Initial Coding
	

	April 29 - May 5
	Sunday
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday

	Design Architecture
	Updates
	
	
	Finalization
	Official Beta
	
	

	Web-Form Generation
	
	Generating Form from Metadata
	Static Demo
	Alpha
	

	Saving to Database
	Can Save Arbitrary Data to Database
	Alpha
	Static Demo
	
	

	Loading from Database
	
	Can Load Saved Data from Database
	Static Demo
	
	Alpha

	User Authentication
	
	
	
	
	No Release
	Initial Coding
	

	Differentiating Users
	
	
	
	
	No Release
	Initial Coding
	

	May 6 - May 12
	Sunday
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday

	Web-Form Generation
	Beta
	
	
	Finalization
	Official Beta
	
	

	Saving to Database
	Beta
	
	
	Finalization
	Official Beta
	
	

	Loading from Database
	
	Beta
	
	Finalization
	Official Beta
	
	

	User Authentication
	
	
	
	Alpha
	No Release
	
	

	Differentiating Users
	
	
	Alpha
	
	Static Demo
	
	

	Form Error Checking
	
	
	Initial Coding
	
	No Release
	
	

	Unit Converter
	
	
	
	
	No Release
	Initial Coding
	

	My 13 - May 19
	Sunday
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday

	Web-Form Generation
	Dynamic Generation of Forms
	Finalization
	Release Beta
	
	

	User Authentication
	
	Beta
	
	
	Release Beta
	
	

	Differentiating Users
	
	
	Beta
	
	Release Beta
	
	

	Form Error Checking
	Alpha
	
	
	Beta
	Release Beta
	
	

	Unit Converter
	Alpha
	
	
	Beta
	Release Beta
	
	

	Graph Generation
	Initial Coding
	
	
	Alpha
	Static Demo
	
	

	May 20 - May 26
	Sunday
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday

	User Authentication
	
	Finalization
	
	
	Release Beta
	
	

	Differentiating Users
	
	
	Finalization
	
	Release Beta
	
	

	Form Error Checking
	
	
	
	Finalization
	Release Beta
	
	

	Unit Converter
	
	
	
	Finalization
	Release Beta
	
	

	Graph Generation
	
	
	
	Beta
	Static Demo
	
	

	Auto-Saving Information
	
	
	
	Initial Coding
	No Release
	
	

	Aggregation Generation
	Initial Coding
	
	
	Alpha
	Static Demo
	
	

	May 27 - June 2
	Sunday
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday

	Graph Generation
	Finalization
	
	
	Final Release
	
	
	

	Auto-Saving Information
	
	
	Finalization
	Final Release
	
	
	

	Aggregation Generation
	
	Finalization
	
	Final Release
	
	
	

The tasks outlined in our schedule will be assigned to members of our groups with a particular role. For example, a task will be assigned to back-end developers and they will be responsible for dividing the work between themselves as necessary. For many of the tasks both front-end and back-end developers will have significant involvement. In the case where both front-end and back-end developers will be working on a task, a percentage indicating approximately how much of the task will involve each role is listed (see Table 2).
Table 2: Breakdown of Tasks by Role
	Tasks
	Assignments

	Design Architecture
	Back-end/Database Developers

	Web-Form Generation
	Front-end/Web Interface Developers

	Saving to Database
	80% Back-end Developers, 20% Front-end/Web Interface Developers

	Loading from Database
	80% Back-end Developers, 20% Front-end/Web Interface Developers

	User Authentication
	60% Back-end Developers, 40% Front-end/Web Interface Developers

	Differentiating Users
	80% Back-end Developers, 20% Front-end/Web Interface Developers

	Form Error Checking
	Front-end/Web Interface Developers

	Unit Converter
	Front-end/Web Interface Developers

	Graph Generation
	Both, 70% Back-end Developers, 30% Front-end/Web Interface Developers

	Auto-Saving Information
	Back-end/Database Developers

	Aggregation Generation
	Both, 60% Back-end Developers, 40% Front-end/Web Interface Developers

3. Risk Assessment
	Risk
	Chance of occurring (High, Med, Low)
	Impact if it occurs (H,M,L)
	Steps taking to increase chance it won’t occur
	Mitigation plan should it occur

	Inadequate Design, Confusion with architecture, etc.
	Medium
	Medium
	Spend more time on initial planning to successfully develop a concrete foundation and structure for the rest of the project to prevent wasted time in the future.
	If this problem does occur, the result will be overtime for all project members in order to make up for what was missed; in addition to reducing features to ensure a deliverable product.

	Code-Like-Hell
	High
	Medium
	Force more time into planning and design to ensure that coding is done systematically and cleanly to avoid throwaway code. Additional weekly releases forces developers to be more accountable and careful.
	Stop at the first weekly release and focus down on design and developing a clear architecture before continuing. The time lost will be made up in the time gained from not fixing errors and less throwaway code.

	Feature Creep
	Low
	High
	A very clear definition of what will be done and what will not be done should be provided to the customer to prevent additional features being tacked on through the project.
	Inform the customer that additional features will mean other features will have to be removed. By taking a strong stance for pragmatic programming, this issue can be resolved.

	Omitting Necessary Tasks from Estimates
	Medium - Because of the apparent simplicity of the project itself, it is very possible to forget an important item
	High
	Careful planning beforehand will help to avoid the appearance of sudden unexpected features.
	Should this occur, some features will have to be omitted or more time will have to be spent on necessary features.

	Unrealistic Expectations
	Medium
	High
	Proper prior planning prevents poor performance.
	Either features will be cut or expectations should be lowered.

Test and Documentation Plan

1. Test Plan

The Washington Administrative Sustainability Tracking Engine (WASTE) is a highly modular project involving several parts that can be combined together for the complete product. Due to this modularity, a great deal of unit tests can be written to test each feature. As long as each module meets to the pre-described preconditions and post conditions final integration should not be beyond normal difficult. There will be several phases of tests based on the modularity of WASTE.

1. Unit Test Strategy

The unit test strategy will involve individually testing each module before it is submitted to the repository. These modules can be the data input, data processing, database interaction and any number of other modules. The unit tests will be implemented using NUnit and will be accompanied by documentation describing the pre and post conditions of the test to ensure that integration is not based on any guessing. Unit tests will be designed by both the developer as well as the developer’s partner to ensure the best coverage. If necessary the Project Manager can also determine suitable unit tests. Unit Tests will be the first line of defense against poor software development.

2. System Test Strategy

This system wide test will consist of unit testing all of the different modules systematically and the integration of the front-end with the back-end. The benefit of having a very complete set of unit tests is the ability to combine them into an automatic system test that ensures that the entire system functions upon adding a new module to the system. Some additional tests will need to be developed to cover the areas between the preconditions specified in the unit tests as well as the post conditions specified in the unit tests. If possible it would be good to do nightly tests of the entire system, or at least weekly tests to ensure that everything is on track and all modules have been integrated successfully. It is required that the entire system be tested before each major module update so it is advisable that developers run unit tests before submitting instead of submitting for a full system test.

3. Usability Test

Due to the well-defined positions with this group there will be certain members who are not as familiar with the code, mainly the Project Manager, the Documentation Writer and the Customer Developer. These positions will be responsible for doing usability tests to ensure that the design chosen by the developers makes sense. Since interface is not an extremely difficult to fix in comparison to the back-end, weekly tests should be sufficient. The tests will be simple by asking the tester to step through basic actions that have been outlined in the milestones and ensure that the user can complete the tasks without difficulty. The Customer Developer is also responsible for releasing latest updates to the customer to get feedback from them as well. Usability is all about the customer thus the developers will do little testing of the usability beyond what is prudent.

4. Adequacy of Tests

Since the WASTE system is modular and will be constructed by combining smaller units together into a larger unit, heavy unit testing is the best way to ensure the best results for the overall product. System tests upon major updates are also sufficient because it maintains that the update does not break the previously working system. Finally usability can be fixed relatively quickly in comparison to the back-end, thus having weekly tests of the usability should be sufficient.

5. Bug Tracking

Bugs are bound to appear in code thus a web service called Bugzilla will be used to report bugs as well as report when they have been resolved. Bugs will mostly be confined to the two primary developers working on the same module together, however if it is necessary Bugzilla should have enough documentation so that another group can assist. All developers will be notified via email when a bug is submitted using Bugzilla’s notification system. During our weekly meetings we will triage open bugs so that we can prioritize their importance.
2. Documentation Plan

The Washington Administrative Sustainability Tracking Engine (WASTE) will be a web-based system, thus the documentation will be available online for users, administrators, and other related parties. Three primary documents will be provided with the system, a User Guide, an Aggregator Guide, and an Administrator Guide. Each guide will be organized by topic. The User Guide will provide information to the user on how to complete basic tasks such as filling out forms, changing filled out information, submitting forms and other information. The Aggregator Guide will provide information to aggregators on how to view information, collate the information, generate visual views of the information, and other tasks related to the aggregator user. The Administrator Guide will provide information to administrators on how to complete tasks such as updating forms, changing the format of forms, adding users, changing passwords and other administrative tasks.

The access to these two documents will be provided through links on the user interface and thus will be protected behind the login system, prohibiting unauthorized users to access the guides. This authentication is important to preserve the security of the system as well as maintaining a clear separation between users, aggregators and administrators. Users will only be able to access the User Guide, aggregators will only be able to access the Aggregator Guide, and Administrators will be able to access all the guides to assist in the administrative tasks.

_1239023565.vsd
+login()
+logout()
+setCookie()
+getCookie()
+loadForm()

-user : User
-sessionID/Cookie
-currentForm

SustainabilityContext

+validateuser()

-username
-password
-userType

User

+ReportRequest()
+displayReport()

-reportData : Form
-Graph

ReportRequestForm

+loadForm()
+updateForm()

-formData : Form

DataInputForm

+GenerateReport()

-rawReportData
-convertedReportData

ReportGenerationModule

+AddToDatabase()
+SQLQuery()

-sqlQuery
-connectionInfo

DatabaseWrapper

+ValidateData()

-formData
-convertedFormData

DataValidationModule

1

1

1

0..1

1

0..1

1

*

1

*

+diplayUsers()
+addUser()
+updateUser()
+removeUser()

-userList

AdminForm

1

0..1

+getUserList()
+updateUserList()

-userList

UserManagement

1

*

1

1

1

1

1

1

*

*

1

0..*

_1239029094.vsd
+login(in username, in password)
+logout(in username)
+setCookie()
+getCookie()
+loadForm(in type)

-user : User
-sessionID/Cookie
-currentForm

SustainabilityContext

+validateuser(in username, in password)

-username
-password
-userType

User

+ReportRequest(in reportType)
+displayReport()

-reportData : Form
-Graph

ReportRequestForm

+loadForm(in Form Type)
+updateForm(in Form Data)

-formData : Form

DataInputForm

+GenerateReport(in Report Details)

-rawReportData
-convertedReportData

ReportGenerationModule

+AddToDatabase(in Database Connection, in data)
+SQLQuery(in Database Connection, in Query)

-sqlQuery
-connectionInfo

DatabaseWrapper

+ValidateData()

-formData
-convertedFormData

DataValidationModule

1

1

1

0..1

1

0..1

1

*

1

*

+diplayUsers()
+addUser(in name, in Pswd Hash, in UserInfo)
+updateUser(in username, in User Info)
+removeUser(in username)

-userList

AdminForm

1

0..1

+getUserList()
+updateUserList(in User List)
+getMeasureList()
+updateMeasureList(in Measure List)

ManagementModule

1

*

1

1

1

1

1

1

*

*

1

0..*

_1239030587.vsd
Web User

Data Input Form

Data Validation Module

Database

Input Data (Form object)

Validate Data (Field1, ..., FieldN)

Newly Inserted Data (DataSet)

Success, data or DB Error

Success or Error condition. New Data

AddToDatabase(Validated Field)

Request View

Invalid Data Error

AddToDatabase(Validated Field)

{OR}

_1238838771.vsd
Web User

Data Input Form

Data Validation Module

Database

Input Data (Form object)

Validate Data (Field1, ..., FieldN)

Newly Inserted Data (DataSet)

Success or Database Error

Success or Error condition. New Data

AddToDatabase(Validated Field)

AddToDatabase(Validated Field)

Newly Inserted Data Pass-Through

Invalid Data Error

_1239014512.vsd
SQL Database

Web Application - C# and ASP.net

User

Reporting Form

User

Reporter

Chart Generator

Administrator

Data Verification

MS IIS Server

Data Entry Form

Data Entry Form

Admin Form

Login Form

Login Form

Login Form

Login Form

Report Generator

Data Verification

User/Data Management

Data Manipulation

Data Manipulation

Schema Manipulation

_1238838839.vsd
Table

_1238838756.vsd
Web User

Report Request Form

Report Generation Module

Database

Request Report(Form object)

GenerateReport(Report Details)

SQL Query(Field1, ..., Field N)

Data for Report(DataSet)

GenerateChart(xvals, yvals, axes, colors, etc)

Formatted Page

Generated Chart

Chart Generator

Formatted Report

