

SuiteRates

Sung Tat Kwok
Brian Stone

Vadim Tkachev
Christopher To
Giles Westerfield

Tim Wong

Software Requirements
Specification

Draft 1
Tuesday 17 April 2007

CSE 403 - CSRocks Inc.

Revisions

Version Primary Author(s) Description of Version Date
Completed

1 Sung Tat Kwok,
Brian Stone,
Vadim Tkachev,
Christopher To,
Giles Westerfield,
Tim Wong

Overall Description, Scope, Use Cases,
Feature List, UI Prototype

04/17/07

Overall Description

Description

SuiteRates is an online service for roommates who wish to organize and
consolidate shared expenses easily and quickly. Anyone who has lived with one
or more roommates will have experienced the tediousness required in
coordinating all house or apartment expenses each month. SuiteRates allows
roommates to securely manage expenses such as rent, utility bills, groceries,
and home improvement items in one central location, without the worries of
making tiresome and mistake-prone calculations. Users can define weekly or
monthly recurring bills, and can opt to receive email alerts when those bills are
due.

SuiteRates is designed to be flexible, allowing either a single roommate to be
designated the task of making final payments, or allowing for the possibility for
payments to be handled by PayPal. Furthermore, many transactions between
roommates can flattened down to just one final payment, eliminating the need to
keep track of payments and having to write many checks. All transaction history
will be available for roommates to peruse, and if necessary, dispute.

Considering the breadth of its target consumer, SuiteRates will be capable of
supporting a high volume of users. Users will register for a free account on our
website which gives them the ability to create a “household”. All the other
roommates can now register and join the household in order to get started. This
system allows for as many customers to use our service as our hardware can
support.

Scope

Depending on PayPal’s services, integration with PayPal may be beyond the
scope of the system. At the very least, however, SuiteRates will be a service
designed to manage and keep track of all shared expenses within a household.
SuiteRates is designed to take the burden off roommates, by allowing users to
add a payment and leaving the rest of the calculations to the system.

The SuiteRates service will run as a Ruby on Rails web service, with MySQL as
its database system. This will require that the web server can handle Ruby
applications and MySQL connection requests. On the client side, users of
SuiteRates will require only a modern web browser that supports HTML, CSS
and JavaScript. Interaction with the website will include both the classic and
AJAX user interaction model.

Ruby on Rails was chosen as the primary scripting language due to its rapid
development paradigm and modular Model-View-Controller architecture. The
intuitive naming conventions in Rails greatly reduce the need for explicitly

defining database model objects (Rails can simply look at a database table and
automatically create a corresponding object), and its rich API allows the
developer to easily create dynamic form objects and make database queries
without writing any HTML or SQL. Rails also comes with built-in CSS support,
which will be essential in establishing a visual theme for our site. In general, the
functionality that Rails provides is comparable to PHP and should be flexible
enough for our project. The primary drawback to using Ruby on Rails is that it is
generally slower than other languages like PHP because it tends to sacrifice
performance speed in favor of more concise and simple code. However, this
difference should be hardly noticeable, and will likely only begin to manifest itself
if we are supporting tens of thousands of users. Should this become the case,
there are still many ways to maximize performance under extreme conditions.

Use Cases

Formal Use Case 1

Goal A user wishes to resolve the debt of another roommate

Level User

Primary Actor User

Precondition User is at the login screen of the website; user has a
registered account; user is a member of a household; user is
owed money from another user

Success end
condition

The debit is resolved

Failure end condition The debt is not resolved

Trigger User logs into the website

Main success
scenario

1. User enters login information
2. Login information is authenticated and the user is

signed on
3. User navigates to the User tab
4. User selects the Resolve Balance button for the

coordinating expense
5. Expense is pending resolve until roommate verifies
6. Debt is resolved and the system updates the balances

accordingly

Extensions 2a. User enters login information
 2a 1 System notifies user of incorrect login info
 2a 2 User attempts to re-authenticate or backs out
5a. Roommate declines the verification
 5a 1 User is notified that the balance was not resolved

Variations 5. User is given the option to resolve only a portion of the
balance
6. Roommate is also notified of his resolved balance

Formal Use Case 2

Goal A user wishes to add a recurring expense that will be added
each payment period

Level User

Primary Actor User

Precondition User is at the login screen of the website; user has a
registered account; user is a member of a household

Success end
condition

A recurring expense is established

Failure end condition The expense is never established and/or the expense is not
recurring

Trigger User logs into the website

Main success
scenario

7. User enters login information
8. Login information is authenticated and the user is

signed on
9. User navigates to the Expenses tab
10. User selects the Add an Expense button
11. Expense amount, payment period, and roommates

are entered
12. Recurring expense is submitted and updated in the

system

Extensions 2a. Login information is incorrect
 2a 1 System notifies user of incorrect login info
 2a 2 User attempts to re-authenticate or backs out
5a. Roommate does not exist
 5a 1 System notifies user
 5a 2 User given the option to proceed with or without
said roommate
 5a 3 User is given the option to invite the roommate

Variations 6. Affected roommates are also notified of new expense

Use Case Summary Diagram

Feature List

Feature Type

Separate accounts to track users independently Beta

Users can create or join “households” which have shared expenses Beta

Verification process to determine whether a given user is allowed to

join a household (other roommates must accept newcomer)

Beta

Add an expense to be paid by certain roommates, with a deadline

and individual weights for each roommate

Beta

Add recurring household expenses that are shared between certain

roommates

Beta

Household message board for public communication Beta

Send private messages between users Beta

Optional email reminders for upcoming expense deadlines Beta

Two-way debt payment verification (both parties must agree that

money was exchanged properly)

Beta

Transaction history for individual users and households Beta

User profiles with personal information Beta

Minimal GUI Beta

Calendar view of coming expense deadlines for individual

roommates and the household as a whole

Final

Contact mechanism to send email to site developers/tech support Final

Polished GUI Final

Final, reliable product—customer tested Final

Documentation/Help/FAQ pages for users and developers Final

UI Prototype

Figure 1: General Expenses Screen

Figure 2: Adding an Expense

