PROJECT 

CAMPS

Campus Mapping Service

By Justin Lundberg, Dale Olson, Charley Zhang 




  

1. Operational Concepts 

We are planning on developing a web-enabled UW campus mapping interface, similar to Google maps or Mapquest. The program will allow users (students, faculty, staff) to navigate to a web page and search for UW campus destinations and plan "trips" between classes. This service is not currently available to the campus community and students would finally know EXACTLY how long they can sleep in. Specifically, the current UW map available online only allows users to search for locations by building name. We would like to see this map replaced by a more powerful and useful utility that provides shortest-route cost estimation, time-to-destination estimates, and possibly even more advanced features such as points of interest (bathrooms, vending machine locations, etc). Our goal is to develop a tool that is functional enough to be used as a replacement for the current campus locator tool employed currently by the UW.

At the most basic level, we envision the final deliverable to include a Java applet hosted by a public server with a database backend that hosts the map information for the client. The final product could cover a wide range in terms of complexity, functionality, and interactivity. We plan to focus more on the mapping functionality/UI than on the data representation/delivery aspects of this project to make it manageable in scope while still relevant. 

2. System Requirements 

Because we recognize that it would be very easy to get overly-ambitious on this project, we have identified a list of components that we consider core essentials to this development project, and a separate list defining features that would be more of a luxury.

Basic Project Goals/Deliverables:
· An applet or web page (depending on implementation) that can search for a specific building and return its location on a map for the user 

· An intuitive GUI that allows for easy navigation within the applet, including handling mouse events and visually drawing paths on the map
· A representation of nodes w/associated path costs that can be used in combination with a shortest-path algorithm to help plan trips between the two destinations 

· Applet should be publicly available on the web for community use 

· Some form of adequate representation for data: complexity/size depends on what we determine the ultimate size of the dataset will be

If We Have Time:
· Scalable, flexible database backend that provides centralized map/node information directly from the web server 

· Allow users to change/update paths based on current conditions 

· Would possibly require authentication of users 

· Nice graphical effects: smooth scrolling of the map, ability to zoom, etc 

· Incorporate other destinations: restrooms, smoking areas, bus stops, etc 

· Potentially create groups for campus destinations that allows searching, i.e. "find the closest Tully's" 

· Would need to account for buildings with multiple floors

· Make several destinations per building to account for different entrances/exits

· Figure out how to go public and sell business idea for $$$ 

· Account for additional forms of transportation besides foot travel: bus, car, bike, pogo, etc. 

· Provide "schedule finder" feature that provides summary of trips needed to make it to a list of classes/destinations -- plan out your whole day!

3. System and Software Architecture
· We currently are considering two different architectures. A Java applet would provide the ability to decentralize workloads and would probably be the most straightforward solution, but we are also exploring the feasibility of employing an AJAX-enabled (read: more web-centric) solution. This would provide a new level of flexibility that would probably not be attainable with an applet.

· Assuming that we will implement as much as possible with Java-centric technologies, we plan on an architecture utilizing:

· The main map interface and logic, implemented in its entirety as an applet. We are considering an applet because of its ability to test/develop in a stand-alone environment, its decentralized nature, and cross-platform portability.

· Possibly a database that could be used for storage and retrieval of map information. We are most familiar with MySQL and feel that it would be able to meet our needs, but plan to consider alternatives before making a decision. 

· Assuming that we will implement as much as possible with AJAX technologies, we plan on an architecture utilizing: 

· The Google Web Toolkit (GWT), an open source development framework that allows "development and debugging of AJAX applications in the Java language using the Java development tools of your choice ... the GWT compiler translates your Java application to browser-compliant JavaScript and HTML". This would hopefully reduce the headache and learning curve associated with learning a new set of technologies by allowing us to do most of the work in Java. 

· We will need to identify a web server to host our pages. We are currently aware of two popular open-source solutions which may meet our needs: Apache 2.0 and Sun Java System Web Server. 

· Hardware requirements will likely include a server for the repository, the database, and the web server. 

· High Level Components: 

· Backend - hardcoded storage of nodes. It takes user-inputed locations and determines the shortest-past and cost estimation.

· GUI - displays map and user input interfaces. Takes user-inputed data and sends it to the backend for computation. Retrieves nodes path from backend and draws the map path accordingly. 

· If time allows, we will also add a database component that will allow flexibility and extensibility in changing node locations and node representations. 

[image: image1.jpg]Map Program

nputs: Map

]

Input D

- getnput lcations from user ~ receive (sting)locations rom Map - Slre node representations.
~send input o Program Interact with Database interact with Program
 recelve path of nodes from Program - compute shortest route

draws route ~send path of nodes fo Map.




4. Lifecycle Plan
We assume that the team will consist of 5 classmates, each dedicating 10 or so hours/week to the project for the remaining 9 weeks of the quarter (450 geek-hours). We see the primary steps in the lifecycle to be the following:

· Overall project design/stakeholder meetings 

· Development 

· Deployment to server and possible integration with database 

· Testing/user product review 

Design Stage (Estimated time: 45 hours or about 1 week)

We have had some time to explore the decisions to be made before beginning development and feel that by Monday the 15th (a week) it would be reasonable to have enough planning done to begin project development. Planning would be ongoing throughout the lifecycle as we are using some new technologies and need to be flexible in order to respond to our changing understanding of the tools available to us. In this stage we would like to develop a more concrete understanding of the technologies that we plan on using and how each part of the package will depend on the others. We will also need to develop a UML metamodel detailing interdependencies and other design considerations within our chosen infrastructure. Finally, during the planning process we will assign responsibilities across the group members so that each individual knows what they will be expected to produce in the development stage.
Development Stage (Estimated time: 254 hours or about 5 weeks)
Building on the Requirements section, we have specified in more detail what building the Basic Deliverables would entail, along with our own estimates for the time each task would require. Extra requirements could be met if time allows:

· Identify base data set to work with throughout development (14 hours) 

· Get workable map image we can use as the base image (4 hours) 

· Measure distances, get starter data set (adequate but not fancy) (10 hours out in the cold w/a measuring tape or poring over a scaled drawing) 

· A representation of nodes w/associated path costs that can be used in combination with a shortest-path algorithm to help plan trips between the two destinations (20 days) 

· Algorithm that calculates shortest-path between two nodes. Our group members have had some experience and good luck with the A* search algorithm and feel that this algorithm would be a good candidate for the task (20 hours) 

· An intuitive GUI that allows for easy navigation within the applet, including handling mouse events and visually drawing paths on the map (110 hours)
· Overall design of GUI, framework development, etc (10 hours)

· Need a way to get user search queries for buildings/nodes/locations (10 hours) 

· Map should be capable of responding to user mouse clicks: "selecting" a location and retrieving its location/name (30 hours) 

· Map should provide visual feedback for calculated trips by generating a line marking the route, may be easier or harder depending on how data is formatted -- however more data requires more time and we feel that putting the time on just one of the two is sufficient (60 hours) 

· Applet should be publicly available on the web for community use (50 hours) 

· Will require a web server capable of delivering the page/applet to the user (50 hours)

· Some form of adequate representation for data: complexity/size depends on what we determine the ultimate size of the dataset will be (160 hours) 

· Our initial thinking on this issue is to minimize the dataset size at first to minimize the amount of work that needs to be done here. i.e. only have a small portion of the map available with perhaps 30 nodes hard-coded into the application as a "test set". (10 hours)

· Further growth of the model would probably require (in the applet's case) a decentralized version of the data that sits on the client side to maximize speed and to simplify the project by eliminating the need for a database. This is not a good idea if we see that the map will have an unmanageable amount of data associated with it. However, if we see that the dataset will end up being small enough to make this format sensible, this would be the most straightforward approach. (50 hours) 

· An alternative would be to use the applet or the GWT with a database that provides data on an as-needed basis. There is still some debate regarding exactly what data would be the most appropriate to send and which end the route processing burden would lie in. (100+ hours) 
Deployment & Testing Stages (Remaining time: 151 hours or about 3 weeks)
At this time, making any sort of reasonable estimate for the deployment and testing stages eludes us due to its interdependency between the type of technology we ultimately select to employ and how complete the database and web server is by the time development is wrapping up. The decisions will be made more or less dynamically: for instance, we may decide 3 weeks in to scratch a large database implementation in order to maintain a schedule.

We plan to use a test-first, develop-second approach and do not expect that writing tests at this stage of the application will be too time-consuming; we hope that most of the time will be spent on bug-fixes.

5. Feasibility Rationale
We believe this project has a reasonable scope and requirements, and that we have a good chance of developing it within the time provided . We have drafted a timeline estimate in the Lifecycle Plan section, and feel that it reflects a realistic level of performance because of the high level of detail that we accounted for and the overall flexibility in the requirements that this type of project provides. The backend of the project (i.e. database, web server)  incorporates a low level of risk because the planned life cycle relies primarily on known resources for the base functionality and will require very little customization (we can use off-the-shelf products). The more challenging and time-consuming aspects of this project will likely be the search and GUI design/development, which is why we attempted to organize this part of the project in more detail. Furthermore, these more challenging portions will all be implemented in Java and using well-known search algorithms: all technology that the three of us are already comfortable with. We feel that this breakdown of tasks by risk minimizes our chances of being overly ambitious and ensures that even if the framework around the package is not completed on time, there is still a deliverable application to demo.

Our main risks stem from our own lack of knowledge and from the difficulty associated with accurately estimating the feasibility of creating a complicated AJAX or other web enabled GUI.  These risks are mitigated by the fact that we have clearly defined a basic project list of requirements separate from the more complicated possible extensions (ie, stuff we would like to do). Some of these basic requirements can be simplified even further, so that we can save time if need be. While any extra features on locations surrounding the path could possibly increase our user base and potentially provide a potential funding mechanism, the base functionality should be sufficient to generate the investment interest necessary to continue the project. Also, if a complicated (web-centric AJAX application) web based GUI becomes much more difficult than planned, we plan to instead refine the Java-based UI and develop the project as an applet, which is a more simple matter of turning our backend java code online as an applet. Even a more simplistic model could be based on a Java web application, which is more or less just placing our application online for users to use.
