CSE 403: Project Proposal

C.A.T. Project

Andrew Yurovchak

Operational Concepts


The name of the project is CAT which stands for computer aided tweening. Tweening (from the term in-betweening) is the process used in animation of taking a few key frames of animation and interpolating in-between frames to create smoother animation. Generally this is done by hand and so can be rather time consuming. The goal of this project is to attempt to replace the human “tweener” with an increasingly sophisticated computer one. If ultimately effective, this concept would be an enormous time saver, allowing animation to be produced faster and cheaper.


As per the project’s specifications, there are two aspects to this project that are oriented in a client-server arrangement. The first is the tweening application itself, which will be responsible for most of the features described in the System Requirements below. The second will be an animation repository, which will store the cumulative progress that an animation team has made. Once an artist has configured the tweening instructions for a specific scene of animation, they can upload that scene to the server, at which point it can be seen and modified by the rest of the team. In this way the general progress of a film can clearly be seen.

Figure 1 – Examples of motion tweening, a simpler technique than what this project is aiming to achieve. Multiple frames shown at once to save space.

[image: image1.jpg]@00 e




 [image: image2.jpg]@




System Requirements


The program will have several elements, which are enumerated here.

Drawing Pad – Since the program will use a simplified format (more on that later) to make the tweening process simpler, it will be convenient if an artist can directly create and modify their frames in that format.


Format Extraction – The above process is likely to be time consuming and clunky and so an alternative is ideal. This feature will attempt to analyze a digital frame and from it generate a (hopefully) similar frame in the program’s format.


 Tweener – Once the program has a number of frames in the required format then the user will have to input the tweening specifications such as frames per second, acceleration, and movement arcs. A movement arc is the line that a point follows from one key frame to the next. This should be able to be manually specified or as an alternative, generated by the program given some basic input.


Player – It will of course be handy to be able to see the results of the tweening that has been applied and so a simple movie player will be required.


Server – A completed scene (the key frames and tweening data) should be able to be uploaded and downloaded from the server. One should also be able to specify and order scenes, perhaps will authorization controls on who can modify what. If everything goes swimmingly, then the server will also have the capability of forwarding its data to the player so that the entire film can be viewed.

Figure 2 – Program Organization


[image: image3.png]Server

Scene
Repository
and

Organization

—>| [mene ] [pow

CAT





System and Software Architecture


This project will likely be in Java due the bulk of existing GUI and graphics code available in the standard packages. While I would like to become more familiar with C++, this doesn’t seem to be the time. See above for a rough organization of project as a whole. Each feature is fairly modular and thus can be developed separately. Eventually the user will have convenient access to all the features via the GUI.


As for the server, I have little to no experience with network code and thus little to no idea how this is going to be implemented. This will likely be one of the primary focuses of the Planning and Research phase of the project.

Lifecycle Plan


This project, in theory, will be implemented in phases, each phase building on the one before it. There are three phases and they are characterized as follows.

Phase 1: The CAT file format is comprised only of straight lines of even width. The Drawing Pad will be able to draw these lines but not edit them. The Format Extraction module will try to convert the given picture into straight lines. The server should at least be able to upload and download files of this format. The player should be able to play sequences of frames at a requested frame-rate.

Phase 2: This phase is characterized by the replacement of lines with arcs in the CAT file format. It is expected by this phase that lines will be able to be drawn and modified. With the addition of arcs, the Format Extraction tool should be able to match a given picture fairly closely. The server should be able to organize and edit scenes of data.

Phase 3: This phase adds color to the CAT file format. A coloring tool similar to the “paint bucket” in Paint will be added. The Format Extraction tool will of course extract colors as well. If all is going well with the server, then the capability to play all the scenes stored on the server will be added.


Given an eight week schedule there will likely be one week spent on planning and research, 4 weeks on Phase 1, two weeks spent on Phase 2, and one week spend refining and debugging the program. I don’t expect we will get to Phase 3, but it will be there if we run out of things to do. Seven people will probably have plenty to do, four assigned to each module in the CAT, one to coordinate the underlying GUI that encompasses them all, and two more to figure out how the heck to get the server working. As for expertise, everyone ideally should be familiar with how swing (the Java GUI) works and it wouldn’t hurt if a few know something about networking.

Feasibility Rationale


At the very least Phase 1 seems like a very attainable goal. However, this does assume that the process of tweening isn’t fraught with issues that make us have to reconsider the general file format and implementation, which may very well be the case. The biggest problem seems to be the server, seeing as I have no personal experience or inkling of how it is supposed to work.

_1229695495

