Couple Rater
Gable, Jordan, Klous, Peck, Plunkett, Sjoquist

Couple Rater

Kristofer Plunkett

Mathias Klous

James Peck

Matthew Gable

Richard Jordan

Nathan Sjoquist

System Design Specification and Planning Document
Draft 1
April 28, 2008

CSE 403 - CSRocks Inc.

Revisions

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	1
	Gable, Jordan, Klous, Peck, Plunkett, Sjoquist

	Initial draft.
	04/28/08

System Architecture
1. Introduction
Our system will be deployed on the Facebook platform, and we will adopt the Ruby on Rails framework for our software development environment. Users access our application through the Facebook website, and the Facebook web application forwards this request to our application. Our system responds to Facebook using Facebook Markup Language (FBML)--a variation of HTML with Facebook specific tags.
The Deployment View diagram shows, at a high-level, how our application interacts with the Facebook application and defines the known hardware and software. Our Design View provides a detailed overview of how our application will appear. Our two Process Views show in greater detail how users interact with our application, through the Facebook website. Finally, we provide a schema for our database and list some design assumptions and

alternatives.

2. Deployment view
[image: image3.png]3.FQL or FB i Do
facebook Ruby on Rails
% CoupleRaterController
5. FBML Response Rating User

T
2. HTTP Request

Network Picture

1. HTTP Request” 6. HTTP Response

aPC

Web Browser

3. Design view - UML class diagram
[image: image4.png]—
Rubyon
Rals | racabooker
FopiestnGontoler
o ey s = Vet S
e
M Roquost e
FacabookSassion
et s
[ey
it surtcate f facbook()
Firendep
CoupeRaterCanrater Fetor ety
Frtfcatons
oo o)
Frevmal s FacebonSeedon et RV Recieel) NI Resporee
reni omon Fameptoctn nrogas A R Tk o ot s
oo kst rasson FacebokSersn, rcurst TV Ryt o0 Response s Sor)
oo baiinfbessnon FacboosSessan e HTML Roquts) FoMLRosposs [ptescion) g
g reerencesn seseon. FacemaokSesdan nreque - ST Raaey PO Fosporee [puish tempatzeo_sciony
it Exasson FacobookSessin, rodiest HTMLRotbosh FoMLRespoe e
- oot rateston)
FeotSroi ot
= o cio)
- - sy
RO o g
e e .
e -t i men: oo
o sy i o s R
i itios.Pictro Ay e - Nowork Aray Norvork
kg oo P ey e o R Arey I
CeTeuie etk) T picures alod wih - Piture Array pid - int
ot ko Pere) Rang Ay | [avrage gt e PG T oo g
s, nt Pt Aray
. ' 24 E
.]
Ratng
T
et
gt
Taig
e
oot it
Feendin resens TR AT

4. Process view – UML sequence diagrams
Sequence diagram 1: User rates a couple, based on Use Case 3.
[image: image1.png]User's Facebook © App scripts App database
browser

| HTTP requestfrating) | | ,
[HTTP request{rating) ' I
- |
rate(rating) }
e I
I
Present{rater, pid1, pid2) !
isPresentrater, pict, pid2) |
nurmber of rows (0 or 1)
oo 2 L]
alt) Tnumber of rows = 0]]
insertRating(data) n
L e L]
I
I
|
T cetiNewPictures |
L (date) i
findPair(data) 1
location in Facebok DB
FQLRequest(data) || [¢=—~ ==~~~ =
« I
I
I
picture data :
,,,,,,, WL !
FMBLResponse(data) 1
HTTPResponse(data)| [4— — = - —— - — L '
Ml :
I
I
I
I

[image: image2.png]User's Browser Eacebook

‘Couple Rater CGl

I
user ks on "My Ratings" ab (HTTP request)

[HTML response]

T'] redirectuser request (HTTP)

getPictures(picl)

luser pictures]

[FBML response]

[ratings that inciude user]

[HTML response]

Sortby "ype (HTML request)

i
|
|
|
|
|

redirect user request (HTTP) |

[FBML response]

Database Schema

The project relies on four database tables:

Users(id, active_pid, gender)

Pictures(id, fb_id, uid, with_men, with_women)

Networks(pid, network)

Ratings(pid1, pid2, rating, uid, time_rated)
pid refers to Pictures.id, uid to Users.id. fb_id is the identifier used to retrieve a picture from Facebook.

The database supports four main operations:

1) Choose two random pictures that fit pairing and network constraints

2) Record a rating given two pictures

3) Calculate a summary rating for two pictures

4) Find all results for a user, grouped by user's picture and ordered by rating
Design Alternatives and/or Assumptions
Alternatives
If the Ruby on Rails framework is not sufficient to meet our requirements, we will be able to switch software development platforms (Java or PHP).
Assumptions
Because we will be deploying our application using the Facebook platform, we assume the supported Facebook API will provide access to user-specific information. We are also required to communicate to Facebook using FBML.

Development Plan
1. Team Structure

Team structure is dynamic, changing each week in response to need. Needs emerge either in meetings or as team members study the project on their own time. Members then step forward and take on specific responsibilities. Since individual team members gravitate toward the responsibilities that interest them (e.g. technical lead, organization, functional areas) and all team members stand ready to take on any remaining tasks, the team self-organizes.

Coherence in the work effort is achieved through good communication, which is maintained by regular Thursday afternoon meetings backed up by Sunday evening meetings scheduled as needed; by daily two-minute stand-ups after class; a team mailing list; the team wiki, particularly the status page; and emails and meetings among subgroups working on specific tasks.
2. Project Schedule

To keep the project on schedule, control scope, and reduce risk, planning is organized around one-week iterations. Since the project has tight restrictions on the time and resources available, flexibility comes chiefly from adjusting features. Each week, in an iteration planning session, the remaining project requirements are evaluated, prioritized and allocated. Evaluation includes breaking a requirement into tasks and estimating the programming time needed to complete each task. Priorities for tasks are set by discussion within the team and with the customers when their input is available. Tasks are allocated by team members stepping forward to sign up for the work they’d like to do in the next week.

Only the tasks that fit within the total programming time available in the current week will be scheduled; the rest must wait for a later iteration. Iteration planning, as opposed to up-front scheduling, allows adjustment of estimates and priorities as experience is gained with the project, and it allows late changes in requirements to be incorporated smoothly into planning and scheduling. Since the highest-priority tasks are selected in each iteration, the feature set at each point in development, including in the final product, should include the most valuable features that can be implemented given the available time and resources.

The table below includes major tasks already completed and features remaining to be implemented.

	Task/Milestone
	Date due
	Resource(s)

	Set up bug tracking, Bugzilla
	4/8/08
	Plunkett

	Set up team and individual Facebook accounts
	4/9/08
	All

	Choose a specific Facebook app to develop
	4/10/08
	All

	Get input from/provide input to customers and executives
	4/16/08
	Jordan, Gable; Sjoquist, Peck; Klous, Plunkett

	Complete SRS
	4/17/08
	All

	Choose a programming language and development framework, Ruby on Rails
	4/18/08
	All

	Set up project space on a commercial server, Joyent
	4/18/08
	Jordan

	Set up source control, Subversion
	4/19/08
	Jordan

	Consider a Joint Venture Agreement
	4/24/08
	All

	Build skeleton Couple Rater app
	4/26/08
	Jordan

	Complete initial SDS
	4/28/08
	All

	Browse couples
	Beta†
	Jordan, Plunkett, Peck*

	Rate the currently viewed couple on a scale from 1 to 10
	Beta†
	Sjoquist*

	See the rating of the couple that you just rated
	Beta†
	Gable*

	Change the picture of you that is seen by others when they are browsing couples
	Beta†
	Klous*

	See how people rated you with other couples (organized by rating, network, gender, etc...)
	Beta†
	Jordan, Klous, Sjoquist*

	Set what genders you show up with when others browse
	Beta†
	Gable, Peck*

	Narrow browsing by network (college, city, friends only, etc...)
	Final†
	Plunkett*

	Narrow browsing by age group
	Final†
	Plunkett*

	Narrow browsing by gender
	Final†
	Gable*

	Receive notifications when both you and another person think you two make a good couple (called "matches")
	Final†
	Jordan, Sjoquist, Peck, Klous*

	See global statistics (such as couple with the most/highest ratings, best couples in your network, etc...)
	Final†
	Plunkett, Gable, Sjoquist*

	Say that you like a person but not notify anyone.
	Final†
	Jordan, Peck, Klous*

	Publish news stories to you about ratings on good couples you are part of
	Final†
	Jordan*

	Be able to search for a particular couple by choosing one or both of the people in the couple
	Stretch†
	Peck, Sjoquist*

	Change your text description that others see when they are browsing couples
	Stretch†
	Plunkett, Klous, Gable*

	Be able to search for a couple based on keywords (that would appear in their description)
	Stretch†
	Peck, Gable*

	Show in a box on your profile how well you rate couples compared to global ratings
	Stretch†
	Jordan, Sjoquist, Klous, Plunkett*

	Rate the currently viewed couple based on keywords (bad, mediocre, good, etc...)
	Stretch†
	Peck, Jordan, Sjoquist, Klous*

Beta = May 12; Final = June 6; Stretch = later. All features subject to adjustment

* Example. Final allocation to be determined in weekly iteration planning sessions
3. Risk Assessment
	Risk
	Chance of occurring (High, Med, Low)
	Impact if it occurs (H,M,L)
	Steps taking to increase chance it won’t occur
	Mitigation plan should it occur

	Dilution of Ratings:
n users equate to n2 couples, which could cause ratings to be spread very thinly and result in a non-interesting user experience.
	High
	High
	We are currently thinking of varying algorithms that could alleviate this problem, such as biasing the couples chosen to be rated towards couples that already have ratings (so fewer couples get more ratings), and also to limit users to rating only couples that are within at least one of their networks.
	Should our plans to alleviate this issue not be sufficient, we will need to respond by implementing more aggressive algorithms and policies for making sure ratings aren’t too diluted.

	Web Hosting:

We will not have access to Cubist for web hosting after the quarter.
	Guaranteed
	High
	We have already subscribed to another web hosting service, through which we will do development and testing, and on which we will deploy our release versions. This introduces a new risk, namely that this hosting service could fail.
	To mitigate the risk that our new web hosting service could fail (for whatever reason), we might consider having some sort of back-up hosting service as a fail-over.

	Dev Environment:
We are using Ruby on Rails as our development environment and programming language, which none of us are particularly familiar with. This could inject a learning curve that could slow development.
	Low
	Low
	We have agreed to get the SDS document finished early so that we can each spend some good time familiarizing ourselves with Ruby on Rails and the development environment in general.
	We are confident that if learning this new environment and language will slow down development, we have the motivation and commitment to catch up on the work that needs to be done.

	Performance:
Must provide users with real-time performance, because they will expect to be able to rate couples and navigate our app very quickly.
	Med
	High
	Keeping this risk in mind, we will need to develop our application around the performance constraint. This will mean, among other things, using fast libraries and algorithms. Also, should our app become heavily used, our basic web hosting service subscription can be upgraded to accommodate for larger bandwidth and database storage needs.
	If performance becomes an issue, depending on where the bottleneck is, we might need to develop faster algorithms, search for faster libraries, or upgrade our web hosting service.

	Team Member Becomes Unavailable:
In a six-person team, if one member becomes unavailable (is sick, leaves on vacation, etc…), there could be significant consequences to the project’s progress.
	Med
	Med
	Since most reasons for a team member becoming unavailable are unpredictable, the best thing we can do is agree to let the team know as soon as something comes up. That way the team has as much time as possible to respond and compensate for the loss of work-hours.
	Should a team member become unavailable, the team will need to quickly come up with a plan to make sure that the work that was allocated to the lost person will get completed on time. This can be accomplished by allocating a point person who would be responsible for quickly responding to these situations by distributing the work to the remaining members.

Test and Documentation Plan

1. Test Plan
Unit Testing

Unit testing is an important aspect of our testing strategy. Several members of our team have not had much experience using our chosen toolkit, so it is very important that we understand how our code is working. Unit tests will ensure that our code is behaving exactly as we intend. To this end, we will adopt a test-driven development strategy using unit tests. For each new feature or improvement to the system, we will begin by writing several unit tests as a test case, and write code to pass the test case. The following six steps outline this strategy.

For each feature or improvement:

1. Compose a test case describing the expected behavior of our new feature.

2. Add the new test case to our collective test suite.

3. Run the test suite and observe failure for the new test case.

4. Write code for new feature with the goal of passing the new test case.

5. Run the test suite and observe success for the new test case.

6. Refactor code as needed.

We will use Ruby's built-in unit testing framework to compose the test cases. The test suite will be a single script containing instructions to run all test cases. This allows us to automate our testing process, and easily perform regression tests and ensure code quality.

Usability Testing

Our team expects that many people with very limited technical knowledge will use our Facebook application. It is therefore important for our application to have good usability. To ensure that our application has good usability, our team will implement usability testing throughout the development process. We will primarily be testing for ease of use, ease of navigation, and stability. Our team feels that the best test for usability is having people use the application to provide feedback. We will not develop a set of tests but instead have as many people use our product as possible. We will primarily have two groups of people testing the usability. First, our team will download our own Facebook application to try and gauge how well our application does in respect to these three levels of usability. Secondly, we will have our customers download and try out our Facebook application. They will be asked to use all of the features in the application. They will then provide feedback on the usability of our application. This will provide an important measure of the usability for our application from people who have not designed the product. We will be continually testing the usability of our application throughout our entire development process.
System Testing

Our team will perform system testing on our Facebook application through the suite of automated tests. These tests will be used to test the system as a whole to make sure that each part of the program works correctly with the other parts of the program. Separate integration tests will also be developed during the development of the application as needed. The integration tests will be added to our test suite, so that each time that our software has a major update, all tests can be run to ensure that our software works correctly. Our team will use system testing throughout the entire development process and will especially use system testing before each major release.
Bug Tracking

Bugzilla will be used to define and track bugs in our software. Group members will post and define their bugs in Bugzilla. Group members will also be assigned to fix certain bugs through the use of this software. After a member has fixed a bug, that bug will be marked as resolved so other members will be up to date with the state of bugs in our software. Bugzilla will help organize our bugs so two people will never be working on the same bug unaware that another person in the team is working on the same problem. Also, if a team member needs work to do, they can look at Bugzilla to see what bugs are currently in the software and unassigned to anyone.

2. Documentation Plan
One of our goals is to create a simple and intuitive user interface which will not require extensive documentation. Users will not need extensive support, so a seperate user guide or manual is not appropriate. We will instead distribute our user documentation throughout the user interface. Text boxes will appear in the user interface giving the user instructions relevant to the functionality they are using. We aim to avoid visual clutter, so lengthy or supplementary text boxes may instead be pop-up boxes, so the information is available as the user needs while avoiding a busy interface. This light-weight user documentation approach complements the low complexity of the user interface.

With our system, we will include a administrative guide as a deployable, providing instructions on how to unpack, set-up, and manage our software system. The scope of this guide will be limited to instructions on how to manipulate the system and not contain a description of the functional behavior of our system. Functional behavior will be explained by our test cases, which will serve as a "living" documentation of our system.

