Foresee
Tyler Burton, Orion Buske, Nick Erkert, Josh Goodwin, Tim La Fond, Mike Luoma

Foresee
Tyler Burton
Orion Buske

Nick Erkert

Josh Goodwin

Tim La Fond

Mike Luoma
System Design Specification and Planning Document
Draft 1
4/28/08
CSE 403 - CSRocks Inc.
Revisions

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	1
	Tim La Fond
	First compilation of SDS.
	04/28/08

T
System Architecture
1. Introduction

This document outlines our planned system architecture and the strategy for developing it. Class diagrams, team structure, documentation, and potential risks will be outlined.

We are basing our design on the common model/view/controller schema. Our view component will use AJAX and JSON to add a bit of candy. These technologies are well supported in the platform we chose for development – Ruby on Rails.

The Foresee team is structured to be agile. We have loosely defined roles that will enable us to put more resources where needed to ensure all goals are met.

The documentation will be based on contextual help and a FAQ section on the Foresee website. Users will see tips relevant to their current task as they progress, and a comprehensive help section will be available through the FAQ.

The potential risks we see are those uniform across any group engaging in its first large scale project. There are many unknowns, from the language we are using to the difficulty of integrating code from several developers. We will address these risks and outline our strategy to overcome them.

2. System Architecture View

3. Design view
[image: image1.emf]
4. Process view
A. Edit Personal Calendar

[image: image2.jpg]User entering availability constraints

Web user Ul View MysaL
Adaboter
I | T
| | Personal |
- . | |
Open Calendar View ! Calendar i
o I
B Fetch Events I
5 |
Get Calendar
NPT |
Return Events i
|
2 Prepare Data i
|
= |
Return Calendar I I
t———————— T | |
Display Calendar | I !
Loop i i i
Add Event — =
Set Event I

D Check Conflicts

If No Conflicts

Set Event

Confirm Write

Return Calendar

Display Calendar

Done (exit)

@ Load Homepage

Display Homepage

>

B. Search for Optimal Time and Create Meeting
[image: image3.jpg]Project Manager Meeting Time
Search and Creation

Project Manager Ul Controller Database

L Search for Time

Search for Time

A 4

>

Fetch Schedules

Return Schedules

l-——————— Calculate Optimal
Calculated Best

|
|
|
|
|
|
|
P —— | Time I
Schedule Selection T i i
View | | |
=	
.	Create Event [
Select Time >l I	
Select Time	7
! Event	
‘————	
T	
Add I	
b e S	
Success or Failure	[
¢ ———	I
Success or Failure I I	
«————————	I
Success or Failure T i i I	

5. Database Schema

[image: image4.jpg]Foresee High-level Database

Event

Calendar

PersonalCalendar|

ProjectCalendar

Meeting

Project

User

6. Design Alternatives and/or Assumptions
The first alternative to the Calendar construct is to avoid having separate classes for the Calendars of Users and Calendars of Projects. As both types of calendars have similar purposes, it is a manner of compiling Events from both the Project Calendar and the User Calendar before displaying them to the View. However, we would still need some way to prevent ordinary users from accessing Project Manager level commands: as such, PM level functionality would probably be implemented in the Project rather than the Calendar class.

Another alternative is to do away with the Calendar class entirely and store the events as objects in the Project. In this scenario each event would need a field indicating whether it is a Project event and if not a record of whom the Event applies to. When generating the Calendar view, the list of Events would be searched for those that apply either project-wide or to the individual in question.

The representation of the duration of Events also has several alternatives. We are currently planning to represent repeating Events with metadata: each Event has a start and end date, a bit code representing the days of the week the Event applies to, and a list of days that are exceptions. Then when a view of the Calendar is generated, repeating Events will be extrapolated to the necessary distance. The alternative to this system is to generate multiple Events out to a certain distance into the future when a repeating Event is generated. The advantage of this alternative is that individual days can more easily be made exceptions by deleting the Event at that day. The downside is increased size of storage and increased complexity when deleting a repeating Event.

Rather than store the start and end day of an Event, it would be possible to store the weeks to which it applies along with the bit code. However, this approach would not allow cutting off a repeating Event midweek unless all days for that Event past the cutoff were made exceptions manually. In our current design we made the data fields for the start and an end day to be of type date of an Event and the hours that it applies to of type time. We may create these fields as type datetime uniformly.

Development Plan
1. Team Structure

The Foresee team is not organized into formal positions, elected or volunteer, but the responsibilities of managing the team and the project have been divided amongst the members. Assignments for code development have not yet been made, but the areas of specificity thus far can be summarized as follows:

Tyler Burton
-
Development, Design diagramming

Orion Buske
-
Meeting communication, discussion moderator, acting PM

Nick Erkert
-
Testing strategy and testing script development

Josh Goodwin
-
Scribe, Feature-list management, build scripts

Tim La Fond
-
Development, Design diagramming

Mike Luoma
-
Bugzilla management, acting technical manager

Our team communicates through weekly project planning meetings, Thursdays at 5:30 PM, touching base after CSE 403 class on Mondays, Wednesdays, Thursdays, and Fridays, and emailing the listserv*, posting to the wiki**. Starting next week, additional weekly meetings focusing on development will be scheduled every weekend.

* foresee@u.washington.edu

** http://cubist.cs.washington.edu/cse403-08sp/index.php/ForeSee
2. Project Schedule

	Task/Milestone
	[Estimated effort]
	Date due
	Resource(s)

	Setup Bugzilla
	.25 Day
	April 24 (done)
	Mike

	Subversion Setup
	.5 Day
	April 24 (done)
	Orion

	Setup Dev Environments
	.5 Day
	ASAP
	Team

	SDS: UML Sequence
	.25 Day
	April 28 (done)
	Mike

	SDS: UML Sequence
	.25 Day
	April 28 (done)
	Tim

	SDS: Design Alternatives
	.25 Day
	April 28 (done)
	Tim

	SDS: System Arch. View
	.25 Day
	April 28 (done)
	Tim

	SDS: Doc. Plan
	.25 Day
	April 28 (done)
	Josh

	SDS: Risk Assessment
	.25 Day
	April 28 (done)
	Josh

	SDS: UML Architecture
	.25 Day
	April 28 (done)
	Tyler

	SDS: Database Arch.
	.5 Day
	April 28 (done)
	Tyler

	SDS: QA, Style Guide
	.5 Day
	April 28 (done)
	Orion

	SDS: Team Structure
	.25 Day
	April 28 (done)
	Team

	SDS: P.P. Overview
	.25 Day
	April 28 (done)
	Team

	Daily Build Script
	.5 Day
	April 29
	Josh

	Testing Scripts/Methods
	.5 Day
	April 29
	Nick

	Setup skeleton web app
	.5 Day
	April 29
	Mike

	Divide Feature Assignments
	.25 Day
	April 30
	Team

	Zero Feature Release
	1 Day
	April 30
	Team

	Beta Release
	
	May 12
	Team

	Beta 2 Release
	
	May 19
	Team

	Final Release
	
	June 5
	Team

3. Risk Assessment
	Risk
	Chance of occurring (High, Med, Low)
	Impact if it occurs (H,M,L)
	Steps taking to increase chance it won’t occur
	Mitigation plan should it occur

	Falling behind schedule, either as a team or as individuals
	Med
	High
	Clear communication of week by week goals, team meetings, clear assigned tasks, regular status updates from team members
	If as a team: plan extra time to work on project, including days for most/all of the team to work together in the labs

If individuals fall behind: as a team discover why, correct/help as needed

	Integration problems between modules
	Med
	High
	Complete builds integrating all components any time a component is updated
	Immediately focus on discovering what is not working and why, work together to fix and get working, integrated build before moving forward

	Lack of knowledge/experience with the tools/languages being used
	High
	Med
	Work as a team to learn common tools. Split up tasks such that individuals have a manageable focus area to learn.
	Utilize online resources and helps, utilize other team members, set aside extra time to focus on learning to use the tool/language

	Feature creep as individual components are worked on and new ideas generated
	Med
	Low
	Clear establishment of essential features that must be complete before any additional/future features are considered
	Review initial core feature list, do not spend time on extra/new features before the core deliverable is completed.

	Subtle bugs/lower quality deliverable
	Med
	Low
	Everyone tests their own code changes before submitting. Create new build after every update. Designate an overall tester to regularly experiment with complete build. Use Bugzilla to record and report.
	Prioritize bugs and work to address them. Use Bugzilla to coordinate efforts.

Test and Documentation Plan

1. Test Plan

Test Plan

1.a. Unit test strategy

- Create and run unit tests for each method before submitting both to the repository.

- Unit tests must run with a given method in isolation from the rest of the project.

- Update unit tests to reflect changes in methods/classes.

- Unit tests are to be created by the method authors.

- Unit tests will be run every time a method is changed.

- Will use the built in unit testing in Ruby on Rails.

b. System test strategy

- We will use a type of black box testing for each system test.

- The system test will test everything submitted to the repository and must be updated as new code is submitted.

- Potential input will be sent to the entire system and compared against expected outputs.

- System tests will be ran as part of the daily build.

- If bugs are found, the author of the method creating the bug will be contacted and they are to give high priority to fixing the bug.

c. Usability test strategy

- This will test input given by real users of the system.

- We will use a form of hallway testing in which we find random people or other class members to test the application.

d. Adequacy of test strategy

- Sufficient unit and system tests should keep bugs from lingering long in the system.

- Consistent test updating and running will help find errors early.

e. Bug tracking mechanism and plan of use

- Bugs will be tracked through Bugzilla.

- Higher priority will be given to vital areas while low priority will be given to less important bugs.

2. Documentation Plan
Documentation Plan:

The ease of use of the Foresee system should make needed documentation minimal. The following components are currently being planned for incorporation into the web GUI of the final deliverable:

· FAQ page

· This will be a list of simple, short answers to the most frequent tasks that users perform using Foresee. This will also be a living document, updated as frequently user submitted questions become apparent.

· Main Tutorial

· An optional introduction to Foresee. Will use graphical aids (screenshots) to guide a new user through the basic tasks in Foresee, including setting up an account, setting up a personal free time calendar, and setting up a project.

· Hover helps

· For incorporation into the individual buttons throughout the GUI. When a user hovers their mouse over an icon, a small text help will clarify the function of that button.

· Features Details

· A document listing the various functions/features of Foresee, along with short descriptions and explanations/examples of their use. This will be the most detailed A-Z lookup for any questions about how to use a Foresee feature.

Based upon user feedback, additional helps and documentation may be generated as deemed useful.

Foresee Application

(Ruby on Rails)

Data

(MySQL)

Foresee UI

Web Browser

(Firefox)

Front End

Back End

