
OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

OfCourse

Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons,
Cedar Bristol

System Design Specification and
Planning Document

Draft 1

4/22/2008

CSE 403 - CSRocks Inc.

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

Revisions

Version Primary
Author(s)

Description of Version Date
Completed

1.0 All First Draft 104/22/08

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

System Architecture

Introduction

OfCourse provides a relational view of courses and instructors aggregated by user-selected criteria.
 Input about courses is gathered from the UW course catalog and is merged against similar data gathered
about instructors. Users are then asked to rate courses and instructors based on an arbitrary set of metrics and
are also asked to provide free-form text feedback. Courses and instructors can then be browsed in order of
arbitrary weightings of the metrics. Other information about courses is also included such as official pre-
requisites, peer-recommended pre-requisites, and peer-recommended alternatives.

The purposes of our project is to be more of a web service than an end-point complete with UI: we
are designing a full external API for other web servers to connect and gather our data. We are, however, also
developing our own UI to interface with the service. This not only diversifies the project but also ensures we
build in an appropriate API ("dogfooding" the API, if you will). Our UI will be composed of the standard
(X)HTML, CSS, and JavaScript layers but will also incorporate the jQuery JavaScript framework for AJAX
and dynamic DOM manipulation. The fact that our entire view/controller interaction is a web service turns
out to be beneficial to us as well when we develop our own UI for the service as it means that absolutely
every system call to view/update data can be made via API calls with, e.g., AJAX.

System Architecture View

We are building this system using the excellent Ruby on Rails framework to coordinate between the
database and the front end. To this end, Rails serves as an object-relational mapper (ORM) connecting to
(either Postgres or MySQL depending on deployment) SQL database server. Rails is for most purposes
completely abstracted from database implementation, so our project will load just fine on PostgreSQL,
MySQL, and even SQLite.

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

Design view - UML class diagram

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

Process view

Use Case #1 Interaction sequence diagram

4.

Use Case #2 Sequence Diagram

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

5.

Database Schema

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

6.

Design Alternatives and/or Assumptions

We are assuming that the best approach (initially) for our target audience is through the construction
of a browser-based "rich" web application. Since we are offering our data primarily as a web service to other
potential front-end providers, our own UI is not strictly necessary and is only one of the many possible
interfaces. Alternatives to this include an Adobe AIR application or a Facebook application. Our assumption,
however, is that the web application will offer an easily accessible way to interact with our data without
being restricted by the interface devised by Facebook. Adobe AIR requires the user to download extra
software in order to use the application.

We also assume a certain amount of tech-savvy in our target audience. We do not plan to build a
large support or "help" section for the site but instead plan to use common user interface elements and to do a

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

certain amount of usability study. The assumption here is that most users of the site are college students.
 Given the popularity of sites such as Facebook, whose target audience matches ours, it is safe to make this
assumption.

Development Plan

Team Structure

• Cosmin Barsan - Scheduling/turnin, Integration Lead, Testing
• Scheduling/turnin - Tracking what items need to be turned in when and insuring everything

is turned in on time.
• Integration Lead - Verify that all components work correctly together.
• Testing - Assisting the Testing lead in verifying all components work correctly individually.

• Nick Brekhus - Testing Lead, Usability
• Testing Lead - Provide oversight and assist in the implementation of our testing strategy.
• Usability - Verify that site meets usability expectations as part of our testing strategy.

• Cedar Bristol - Model Lead, Controller Lead
• Model Lead - Implement the data model. Make sure that there are tables to put data in and

methods to update data and sample pages to show other developers how to call them so
that they can get do their parts. Collect feedback from other developers on the model
components.

• Controller Lead - Ensure smooth communication between model and view components.
• Aron Hershberger - Documentation Lead, Data Migration Lead, Customer Relations

• Documentation Lead - Insure all documentation (including online User Help and Admin
Help/API documents) gets written and is clear and readable, final review and
editing/formatting of all documents submitted to CSRocks to insure they are complete and free
of errors.

• Data Migration Lead - Write a parser and scrape data from publicly available sources to
initially populate the database.

• Customer Relations - Coordinate and participate in all customer/vendor interactions,
providing a single contact point for our customer/vendor.

• Ryan Timmons - Project Lead, UI Lead
• Project Lead: Coordinate the "direction" of the project: are our features showing up in our

code and in our product? Are we suffering from feature-creep or are we behind on deadlines?
Is the team sure of what it's doing at any given time and why it's doing what it's doing? The
project lead, along with being super wicked-awesome, answers these questions. And eats
cake.

• UI Lead: The UI lead is the point-contact for what is being worked on and what is the current
status of development of the user interface. The UI lead ensures that aspects of the UI are
consistent with the project's goals and feature set and that components of the interface are
done at the right times and on-schedule.

• Ziling Zhao - API Lead, Version Control, Internal Systems Management (trac)
• API Lead - ensures that the necessary data is available external to the application and that the

application is able to receive data from external sources. The API lead must also work closely
with the Model lead and the Integration lead to ensure that all necessary components of the

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

architecture are accounted for whenever data is transfered among application layers or external
calls.

• Version Control - Verify that changes submitted meet coding standards, makes sure that
people are keeping with proper version control etiquette, and overseeing merge and branch
operations.

• Internal Systems Management - Keep trac, svn, and reference application up and running.
The reference application being the trunk version of our application.

Team Communication

• Meeting Times (meetings twice weekly, all group members should try to get to each meeting
and must come to at least one meeting per week)

• Tuesdays 7:30pm CSE 006
• Thurdsays 10:30am CSE 006

• Wiki at https://www.enragedcoconut.net/trac/OfCourse includes the minutes from each meeting.
• Mailing list: cse403-ofcourse@u.washington.edu - all email from the list should be read and (if

appropriate) responded to within 24 hours.
• Individual and group progress, tasks, bugs, etc. are tracked by tickets in our Trac instance online at

https://www.enragedcoconut.net/trac/OfCourse/report, which all group members must check and
update regularly.

Project Schedule

Task/Milestone [Estimated
effort]

Date due Resource(s)

Set up trac 1 Days April 9 Ziling

Schema 3 Days April 21 Cedar, Ryan

Scaffolding 3 Days April 22 Cedar, Ryan

UI Prototype 2 Days April 30 Ryan

Zero Feature Release April 30

Unit Test Framework 3 Days May 4 Nick

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

Finish parser and
import parsed data
into database

5 Days May 7 Aron

Functional Test
Framework 3 Days May 7 Nick

Basic View /
Search Functionality 4 Days May 9 Ryan

Integration Test
Framework 3 Days May 10 Nick, Cosmin

Basic Edit
Functionality 4 Days May 11 Ryan, Cedar,

Zilling

Beta Release May 12

Browse UI
funtionality 5 Days May 16 Ryan, Cedar,

Zilling

Beta2 Release (for
customer eval)

 May 19

Advanced Search 3 Days May 22 Ryan, Cedar, Aron

User Accounts
Feature implemented 4 Days May 30 Ziling

Usability Verification 1 Day June 1 Nick

Online User Help
documentation
complete

2 Days June 2 Aron, Nick

Online Admin/API
documentation
complete

2 Days June 4 Aron, Ryan

Final Release June 5

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

Risk Assessment

Risk

Chance of
occurring
(High, Med,
Low)

Impact if it
occurs (H,M,L)

Steps taking to in

crease chance it
won’t occur

Mitigation plan
should it occur

Too UW specific
(inflexibility of
architechture)

High Low

(planned
limitation)

Code the project
as generically as
we can without
sacrificing ease
of use and
implementation.
Deciding we
don't really care
very much if this
risk occurs.

Trying to
expand the
project beyond
UW would be at
best a stretch
feature at this
point, so we
won't really care.

Subject to "the network
effect"

High Med Advertise Advertise More

Abuse by Malicious
users

Med

 Med

Rudimentary
Authentication
procedures

Provide a well
documented and
easy to use
process for
administrators to
maintain the
data.

Difficulties with Data
aggregation

Med

Low

Write a good
parser to seed the
database

Encourage users
to correct the
data.

Difficulties with data
representation
(espeically prerequisites
)

Med Low
Designing
alternate
interfaces.

Represent
Prerequistes
textually instead
of in a complex
boolean
structure.

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

Test and Documentation Plan

Test Plan - Ziling

1. Unit Test Strategy
1. The objective of these tests are to ensure that the individual components work as advertised.
2. Every single component of our system is to include unit tests. Our development strategy is test

driven, before any component is to implemented, a test and spec must be written and reviewed by
team members.

3. These tests will be run as part of the system test, on commit basis as well as by the developer. It is
the commiter's responsibility to test as he implements.

2. System Test Strategy
1. This tests the system on a larger scale, on how the components integrate together and how well

they perform their tasks and operate within scenarios.
2. These tests will involve both user interaction as well as a large amount of interaction. Since our

software is primarily a service, it would be trivial to implement automated scripts that would test
the system on a daily basis. A simple test framework would be constructed to hook into subversion
commits in order to test to see if they have any regressions.

3. Tests will be conducted in a large scale every day/week, with small tests being run on each commit
to trunk.

3. Usability Test Strategy
1. We will test to make sure that the interface is usable. Usability is defined as the ease and efficiency

of which people can utilize our tool in order to complete a task or set of tasks. This would both
involve utilization of the tool when it is foreign (e.g.: learning curve), as well as methods of
acceleration as familiarity with the tool increases.

2. These tests would mostly involve review of the site using design heuristics such Nielsen's Top Ten
as well as past experiences and knowledge of our team members. In addition to this, usability tests
may be conducted on subjects outside of our group.

3. Design testing will be run as often as user interface changes are made. External/customer testing
will happen much rarely due to constraints on resources as well as time.

4. Adequacy of Test Strategy
1. We expect the strategies described above to be adequate. Since our development will be test driven

and the system will be tested frequently both in terms of components and as a whole, we expect the
final product to function as the user intends it.

2. In order to ensure that our test strategies remain adequate and system quality is monitored, we have
appointed a test lead to oversee the implementation of these strategies.

5. Bug Tracking and Ticketing
1. We are using trac to track bugs (as well as tasks and etc.). See

https://www.enragedcoconut.net/trac/OfCourse/report/6 .

Documentation Plan

Online User guide ("help files", how to use) - This will include online help links or popup text for
most features visible to the users, as well as a general "User Guide" and FAQ.

OfCourse
Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons, Cedar Bristol

Online Admin Guide (how to set up) - A set of pages clearly explaining how to set up and administer
the application.

Developer guide (api documentation) - Pages explaining the rails objects and the web service api.

