
U-Mail System Design 

Specification
Joseph Woo, Chris Hacking, Alex 

Benson, Elliott Conant, Alex 
Meng, Michael Ratanapintha

April 28, 2008

1



Outline

• System architecture

• Development plan

• Test and documentation plan

2



U-Mail, the online e-mail client

• Objective: to create a web e-mail client that 
allows universal access to all of a user’s 
accounts, as conveniently and securely as a 
desktop mail client.

• Customers: Users with multiple e-mail accounts 

• Scope: Access to POP/IMAP accounts, sending 
e-mail, address book, security, Spam filtering, 
AJAX UI, and storing encrypted messages.

3







Outline

• System architecture

• Development plan

• Test and documentation plan

6



How to Structure The Team?

• We would like everyone to see all of the software 
lifecycle, system design

• But if everyone does everything, then we have 
chaos, slipping deadlines, unhappiness…

• So, we let a few people see “the big picture”

• The rest get assigned a single subsystem to work 
on

7



Our Team Structure

• “Big picture” jobs

▫ 1 Architect to design at high level

▫ 1 Project Manager to keep work on track

• Everyone else is a “developer/tester”

▫ Performs all other job functions

▫ But each person is responsible for a separate 
functional area

8



Roles of Architect

(Chris Hacking)
• Designs high-level system architecture

▫ How many subsystems, and what do they do?

• Makes subsystems talk to each other

▫ Subsystem interfaces

▫ Custom low-level APIs

▫ Integration tests (supervision only)

• Gives final word on design decisions

9



Roles of Project Manager

(Joseph Woo)
• Manages work schedule: deadlines, internal 

meetings, etc.

• Submits deliverables to customer

• Talks to customer on team’s behalf

• Keeps team records: meeting notes, design 
documents, customer communications

10



Roles of Developer/Testers

(Everyone else)
• Implements subsystems based on architect’s 

design documentation

• Identifies and fixes bugs

• Gives feedback on design to architect

• Writes unit tests

• Writes test applications

11



Schedule and Features of Releases

• April 30: Zero-feature release

▫ Back end (DB schema, MVC) working, can login

• May 12: Beta 1 release

▫ Create accounts, view mailbox, send, receive, and 
compose mail, use address book

• June 6: Final release

▫ Compose with rich text and attachments, import 
contacts, use public people directories (LDAP)

12



Is the schedule good enough?

• Tasks for ZFR are specified in high detail.

• But for future releases, we know what to deliver, 
but not what tasks to do to deliver it.

• We understand your concern about this – we 
believe it is our most likely risk.

13



Possible risks (1)

• We can’t deliver promised features

▫ Very likely to occur

▫ As our schedule and architecture evolve, we will 
see what we can’t deliver

▫ Then, we prioritize – let some features be late, so 
others can stay on time

• We’re lazy assholes

▫ Leads to above

▫ Schedule, good management by PM should fix this

14



Possible risks (2)

• Our 3rd party libraries aren’t good enough

▫ We have several choices, so can easily switch

• Our database doesn’t scale

▫ Can limit storage if needed

• You realize you (do not) really want X

▫ Must make sure our architecture can adapt

• We don’t know C# or .NET

▫ Online tutorials, talk to our team’s experts

15



Outline

• System architecture

• Development plan

• Test and documentation plan

16



Our test strategy

• We use 3 types of tests

▫ Unit tests of individual classes/modules

▫ System/integration tests to ensure everything 
talks to each other

▫ Usability tests so we know if YOU can use it

• We think this is enough; it covers all the building 
blocks of your user experience

▫ But we are willing to add more or different tests if 
needed

17



Unit Tests

• Test an individual class for correct operation, 
independently of the rest of the system

• The developer of a class writes its unit tests

• But we will use common standards for unit tests

▫ Examples: Test at least 3 border cases, use at least 
5 data sets on each method

• Will be run with the nightly build

18



System/Integration Tests

• Test interaction between classes and methods to 
ensure interoperation of system components

• Architect will supervise development of 
integration tests, and may write some himself

• Ideally, will be run with nightly build

▫ But may take too long, especially as system nears 
completion

19



Usability Tests

• Test the transparency of system functions when 
presented to an end user

• Will be developed around use cases
▫ Use cases taken from SRS or written specially
▫ We give tester the goal of the use case
▫ Observe tester using system, note actions, 

responses not covered in use case

• Will be done weekly
▫ Ideally, do them with customers in customer 

meetings

20



Bug Correction

• “No broken windows”: everyone is responsible 
for the entire system

▫ Though some are more responsible than others

• Bugs will initially be assigned to the writer of the 
affected class or module

• BUT, if no action is taken within ~3 days, 
reporter or others will take responsibility

21



Structure of documentation

• User’s guide

▫ Accessible through online help

▫ Context-sensitive (clicking Help in the composer 
shouldn’t send me to the configuration help)

• Administrator’s guide

▫ Because we’ll forget 10+ years from now

▫ Because others have to learn fast

22



Who writes the documentation?

• Architect outlines both user, admin guides

▫ He designs the system at a high level, so he should 
describe it to the user at a high level

• But each developer writes the part that concerns 
his own subsystem

▫ Architect will read, revise as needed

23



Conclusion

• We know what we are doing

▫ Our feature set is complete (until you change it)

• We know how to do it

▫ Our architecture is becoming clear, and remains 
adaptable

▫ Our team roles and schedule are well-defined

▫ We test from the tiny to the humongous

• We know we may have problems

▫ We know about and can mitigate our top risks

24


