U-Mail

Alex Benson, Elliott Conant, Chris Hacking, Alex Meng, Michael Ratanapintha, Joseph Woo

U-Mail
Alex Benson, Elliot Conant, Chris Hacking, Alex Meng, Michael Ratanapintha, Joseph Woo
System Design Specification and Planning Document
Draft 2
April 28, 2008
CSE 403 - CSRocks Inc.
Revisions

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	1
	Joseph Woo
	Started Document
	4/24/08

	1.1
	Alex Benson,

Michael Ratanapintha
	Doc and test plan
	4/24/08

	1.2
	Alex Benson

Joe Woo

Michael Ratanapintha
	Added schedule

Added risks

Formatting clean-up
	4/27/08

	1.21
	Alex Benson
	Added MVC diagram
	4/27/08

	1.3
	Alex Meng
	Revised schedule
	4/27/08

	1.4
	Michael Ratanapintha
	Added UML class diagram

Rewrote architecture intro
	4/28/08

	2
	Chris Hacking

Alex Benson
	Added UML Sequence diagrams
Added database schema

Added design alternatives/assumptions
	4/28/08

System Architecture
1. Introduction

For our U-Mail application we will have three tiers: a database, a controller, and a user interface or view.

The database, implemented in Microsoft SQL Server, is responsible for storing users’ profiles. Each user’s profile will contain their login information, as well as all their mail from their various accounts. Their profile will also contain their address book which will be integrated from their various email accounts. Each profile will have its own tables in the database. This way, indexing and other operations (deleting, updating, etc…) will be relatively fast and will not cause conflicts if multiple users try to update simultaneously. Potentially sensitive data in the database will be encrypted using a key specific to each account.
Our controller will mainly send and receive mail from outside servers. We will communicate with these servers using third party libraries that understand and form a model wrapping around the POP3, SMTP and IMAP protocols. The controller also filters mail, using a rule-based filtering system (nature to be determined) and the SpamAssassin spam filtering library. The controller will also read and write data in the database using the ADO.NET classes for SQL Server (these and the database schema form another part of the model). While some of these data will be taken from incoming mail from outside servers, much of it will come from the UI instead. In particular, the controller will take mailbox listings and mail messages from the data tier and send them to the UI tear for the user to read. The controller will also receive configuration changes and drafts of messages being composed from the UI tier, and will store these to the database.
The UI or view is the point of interaction between the user and our system. Using the view, the user can view mailboxes, read mail messages, compose mail, and configure the U-Mail system. The view will constantly interact with the controller to store and display the user’s data, through the ASP.NET programs that create the various UI web pages and send them to the user mainly as HTML and JavaScript. The client-side JavaScript will allow much of the interaction between view and controller to happen asynchronously, without disrupting the user.
2. Pictorial overview (MVC)
The Model-View-Controller (MVC) diagram below shows the high-level view of the system outlined in section 1 more vividly.

[image: image1.emf]View

Model

Controller

ASP.NET/AJAX

User Interface

Authentication and

profile management

Clients for remote

mail servers

Data storage

interface

Message /

SPAM Filter

Addressbook

handler

Mail Handler

MS SQL Server

3. Design view - UML class diagram

This diagram represents the “functional” parts of the mail client, which represents most of the controller.

[image: image2.emf]Profile

-UserName : string

-Password : string

-Accounts : MailAccount

-Addresses : AddressBook

MailAccount

#UserName : string

#Password : string

#Server : string

#Port : int

#SSL : bool

+Import()

+Export()

AddressBook

-Addresses : MailAddress

+Send(in message : OutgoingMessage)

SmtpAccount

#GetNewMail()

InboxAccount

#Address : MailAddress

#Folders : MailFolder

-DefaultSmtp : SmtpAccount

-SentFolder : MailFolder

-DraftFolder : MailFolder

ImapAccount

-RootFolder : string

-CanHaveSubfolders : bool

Pop3Account

-RemoveMessages : bool = false

-RemoveWhenDeleted : bool = true

-RemoveOldMessages : int = 0

MailFolder

-Name : string

-Folders : MailFolder

-Messages : MailMessage

+Forward() : OutgoingMessage

MailMessage

#Date

#From : MailAddress

#To : MailAddress

#Cc : MailAddress

#Bcc : MailAddress

#ReplyTo : MailAddress

#Subject : string

#Contents

#Id

#Account : InboxAccount

MailAddress

-FirstName : string

-LastName : string

-EmailAddress : string

-PlainTextOnly : bool = false

-End1 1

-End2 *

-End3 1

-End4 1

-End5 1

-End6 *

-End7

1

-End8

*

-End9 1

-End10 *

End3

End4

+Send()

+SaveDraft()

OutgoingMessage

-SendVia : SmtpAccount

-Sent : bool = false

+Reply() : OutgoingMessage

+ReplyToAll() : OutgoingMessage

IncomingMessage

End1

End2

Process view – UML sequence diagrams
Message Composition

[image: image3.emf]View ReceivingAccount SmtpAccount

Compose new mail

User

Compose window

{OR}

Enter address

Enter name

AddressBook

address

FindName

Enter subject

Compose message

OutgoingMessage

New

Update

Database

InsertMessage

success

Update

UpdateMessage

success

Attach a file

File attached

Update

UpdateMessage

success

Save message draft

Save

UpdateMessage

success

success

Draft saved

Send message

Send

Send

success

MoveToSentFolder

success

success

Sent successfully

Display previous view

Account Creation

[image: image4.emf]User

Profile ASP.NET Database

Remote Server

Create new account

New account view

New account details

AddAccount

Validation

New

MailAccount

Test connection settings

success

Request account confirmation

Confirm account creation

CreateAccount

CreateAccountTable

transaction success

success

Prompt to retrieve mail

Yes, get mail now

{OR}

GetNewMail

Retrieve mail

No, get mail later

View folders and mail

View folders and mail

Filter

success

New mail

4. Database Schema

Static tables are a fixed part of the database schema and dynamic tables are generated programmatically according to the templates below. The creation of the unique tables for each profile will allow multiple users to modify data at the same time.

Static Tables
Profiles

· Name
· PassHash
· Other Profile Information
The profiles table has a one-to-many relationship with accounts, and each profile has its own addresses, folders, and messages tables.

Accounts
· Profile ID (foreign key)
· Account information (server, login, pass, etc.)
Each account is associated with a profile.

Dynamic Table Templates
Addresses (one table per profile)
· Name
· E-mail
· Other contact info
Folders (one table per profile)

· Account ID (foreign key)
· Name
· Folder meta-data
Messages (one table per account)
· Message Meta-data (to, from, cc, etc.) in separate fields
· Message contents
· Folder ID (foreign key)
5. Design Alternatives and/or Assumptions
· We chose to use ASP.NET and C# because they are familiar to many of the group members, and easily learned from Java (as opposed to learning a totally different language/toolkit).
· POP3, IMAP, and SMTP should cover the mail protocols our users need. HTML-accessed mail accounts, like Hotmail, are already accessible from anywhere, as is Exchange (via Outlook Web Access).

· We selected SpamAssassin, despite it being in Perl (while the rest of the project is C#) because we consider it one of the best and most complete tools of its kind, and there already exist C# wrappers for it.
· We assume the ability to do full-text search of all email is not considered a critical feature at release.

· We elected not to include a SMTP server in U-Mail itself since we assume anybody with a mail account will already have their own SMTP server.
· We chose to encrypt data in the U-Mail database because we believe that privacy in the case of snooping admins or compromised servers In the event that we can’t allow users to reset forgotten passwords when encryption is used, we will make encryption optional.
Development Plan
1. Team Structure & Responsibilities
Architect (Chris Hacking)

· Designing interfaces.

· Designing APIs.

· Designing and identifying components.

· Defining database schemas.

· Final design decisions on features and implementations.

· Ensure component integration.

· Adhering to the MVC paradigm: ensuring architecture represents MVC.

· Attend customer meetings

Project Manager (Joseph Woo)

· Schedule internal, customer, and technical meetings.

· Communication between customers and external groups.

· Submit final deliverables to upper management.

· Maintain point of contact role within the group.

· Attend customer meetings.

· Update wiki's, making meeting notes available for the group.

· Maintain project schedule.

· Transcriber during meeting.

Software Developer and Test

· Implements components and features based on design architecture.

· Responsible identifying, resolving, and verifying bugs/defects.

· Provide feedback to architect regarding coding/design concerns.

· Develop unit tests for each class built.

· Develop testing applications for project.

· Performing all unit tests and passing them before submitting code to source control.

· Maintaining documentation for code developed.

· Review code of peers.

2. Project Schedule

	Task/Milestone
	Estimated effort
	Date due
	Resource(s)

	Set up bugzilla
	1 day
	April 20
	Chris Hacking

	Set up initial db
	1 day
	April 25
	Chris Hacking

	Create DB Schema
	1 day
	April 26
	Chris Hacking, Elliot Conant

	GUI talks to DB
	1 day
	April 28
	Joe Woo

	Set up Forms Authentication
	1 day
	April 28
	Joe Woo and Chris Hacking

	Commit base code (empty files?) to SVN
	1 day
	April 28
	

	Find .NET module for SpamAssassin
	1 day
	April 28
	Chris Hacking

	Design login screen
	1 day
	April 28
	Joe Woo

	Design mailbox view
	2 days
	April 29
	Joe Woo

	Design compose view
	2 days
	April 29
	Joe Woo

	Create initial script for nightly build/test
	1 day
	April 29
	Michael Ratanapintha

	Design account creation form
	1 day
	April 30
	Joe Woo

	ZFR Release
	
	April 30
	Everybody

	Implement account creation
	2 days
	May 2
	Developers/Testers

	Implement IMAP retrieval
	4 days
	May 6
	Developers/Testers

	Implement POP retrieval
	4 days
	May 6
	Developers/Testers

	Implement plain text composition
	2 days
	May 5
	Developers/Testers

	Implement SMTP message sending
	2 days
	May 8
	Developers/Testers

	Implement address book
	3 days
	May 9
	Developers/Testers

	Implement message filtering
	2 days
	May 11
	Developers/Testers

	Beta Release
	
	May 12
	Everybody

	Design account creation templates for popular mail services
	1 day
	May 14
	Chris Hacking

	Implement rich-text composition
	3 days
	May 16
	Developers/Testers

	Add support for attachments
	3 days
	May 16
	Chris Hacking

	Implement draft saves
	2 days
	May 16
	Developers/Testers

	Implement LDAP support
	3 days
	May 16
	Developers/Testers

	Implement contact import functionality
	3 days
	May 23
	Developers/Testers

	Implement message search
	2 days
	May 23
	Developers/Testers

	Implement support for multiple SMTP servers
	2 days
	May 23
	Developers/Testers

	Integrate SpamAssassin
	5 days
	May 30
	Chris Hacking

	Add support for multiple FROM addresses
	2 days
	May 30
	Chris Hacking

	Final Release
	
	June 6
	Everybody

3. Risk Assessment
	Risk
	Chance of occurring (High, Med, Low)
	Impact if it occurs (H,M,L)
	Steps taking to increase chance it won’t occur
	Mitigation plan should it occur

	We are unable to deliver all of the promised features.
	High
	Medium
	After we create the architecture, we’ll have a better picture how easy it is to implement all the features we want. It will gives us a better picture of what is feasible and what is not.
	We will rank all of our features from most important (needs) to least important (wants). This way, have a systematic way of prioritizing what we should have in our shipped project. So when push comes to shove, we will be able to skim the unnecessary features.

	Our customer realizes that the given requirements are incomplete or incorrect.
	Medium
	Medium
	We will meet with our customers often so that we focus on developing only the features they want and keep their vision in mind.
	If the requirements do change, we have to ensure that our architecture is flexible enough to change and meet the new requirements without requiring a significant amount of re-coding to be done.

	Team members are not familiar with C# or the .NET Framework.
	High
	Low
	All of the team members have had extensive experience with Java and C# is almost syntactically identical. However, learning the .NET library might take significantly more time. So right now, since we don’t have anything to code, anyone not currently working on the SDS is familiarizing themselves with .NET.
	If we run into significant roadblocks when it comes to implementation time. There are a wealth of tutorials on the web (asp.net, fourguysfromrolla.com, etc…). Also, there are at least two members of the team that are very familiar with C#/.NET and can fill the gap in the meantime while the other members are learning C#/.NET.

	Third-party libraries are insufficient or unreliable.
	Medium
	Low
	On our wiki page we are compiling a bunch of different libraries that perform essentially the same task. That way, if the library we decide to go forth with doesn’t have the features we want or is buggy, we have an alternative easily at hand.

	We will make our code as general as possible so if any changes to our third party libraries do occur, we can easily swap over to another library without much difficulty.

	Our database cannot scale to store all of our users’ emails.
	Low
	High
	Chris Hacking has come up with an innovative architecture that will generate a table unique to each of our users. This will allow for easy indexing and reduce lag by separating each user’s email from each other.
	If Chris’ solution does not work like we planned, we can always limit the amount of e-mail users can store on our database. This constraint will reduce the amount of load placed on our database.

	Team members have difficulty staying on task
	High
	Medium
	Have written agenda for each meeting and goal completion times
	Allot extra time for work items. Getting done early is bonus.

Test and Documentation Plan

1. Test Plan

A. Unit test strategy

a. Tests classes and methods to ensure operation of the smallest system components

b. Tests will be developed by those responsible for individual modules/classes

c. Specify minimums for each method (ex: At least 5 sets of data for each, target border cases)

d. Daily, with nightly builds

B. System test strategy

a. Tests interaction between classes and methods to ensure interoperation of system components

b. The architect will have close overview and/or direct involvement in test creation

C. Usability test strategy
a. Tests the transparency of system functions when presented to an end user

b. PM will supervise their development as he is point of contact with customers/users

c. Developed around use cases, provide user with a goal, observe usage, deviance from use case

d. Weekly usability tests

D. Quality Strategy
a. Bugzilla: our Bug tracking solution

i. Assignment will initially go to the involved class/module’s owner

ii. After a time of inactivity (2-3 days?) others will have to take responsibility

2. Documentation Plan

An online help system with context-sensitive help will be the main access method for the user’s guide. In cooperation with the user interface designer (to be determined), the Architect will write a high-level outline of the user’s guide as part of his work designing the high-level system architecture. The Architect will also outline an administrator’s guide, a must to provide for proper setup and operation. However, both the user’s and administrator’s guides will be written in full by all the developers, with each developer responsible for those parts of the guides touching his subsystem. The Architect will read and revise the guides to make sure they agree with his vision; however, editing for style will, if needed at all, be left to the Project Manager’s designee.

_1270852265.vsd
User

Use Case

View

ReceivingAccount

SmtpAccount

Compose new mail

Compose window

{OR}

Enter address

Enter name

AddressBook

FindName

address

Enter subject

Compose message

OutgoingMessage

New

Update

Database

InsertMessage

success

Update

UpdateMessage

success

Attach a file

File attached

Update

UpdateMessage

success

Save message draft

Save

UpdateMessage

success

success

Draft saved

Send message

Send

Send

success

MoveToSentFolder

success

success

Sent successfully

Display previous view

_1270858061.vsd
View

ASP.NET/AJAX User Interface

Authentication and profile management

Model

Controller

Clients for remote mail servers

Data storage interface

Message / SPAM Filter

Addressbook handler

Mail Handler

MS SQL Server

_1270852425.vsd
User

Use Case

Profile

ASP.NET

Database

Remote Server

Create new account

New account view

New account details

AddAccount

Validation

New

MailAccount

Test connection settings

success

Request account confirmation

Confirm account creation

CreateAccount

CreateAccountTable

transaction success

success

Prompt to retrieve mail

Yes, get mail now

{OR}

GetNewMail

Retrieve mail

No, get mail later

View folders and mail

View folders and mail

Filter

success

New mail

_1270850072.unknown

