Visual Registration
Zachary Allred, James Hu, Alyssa Irwin, Chad Mackley, Allan Quiaoit, Jacob Newgard

Visual Registration
Zachary Allred

James Hu
Alyssa Irwin

Chad Mackley

Allan Quiaoit

Jacob Newgard
System Design Specification and Planning Document
Draft 1.0
Date April 27, 2008
CSE 403 - CSRocks Inc.
Revisions

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	1.0
	VR Team
	Initial Draft
	04/27/2008

System Architecture
1. Introduction

Our application has a traditional client-server architecture backed by a database. Our front-end software will be written in Adobe Flex and will run in the browser client-side. The Flex code will interface with PHP code running on our web server, which will query our MySQL database on the back end. Our team is split up into three groups, one to handle the Flex front end, one to write the PHP code, and one to set up and maintain the database. We will handle unit testing on a team to team basis (each team unit tests its own code), but system-wide testing will be performed by members of different groups, and usability testing will obviously involve users outside of our team. We will use BugZilla to track bugs, and SVN to ensure code concurrency.

2. System architecture view
[image: image1]
3. Design view

[image: image2.jpg]Visual Registratio

Actity
Schoduie frame
. [descrpion
S 'B;
* frremoveActitylin : Aciivity) [
i + —fdaysormemesk
LoeCredis() [Feontesviinm - Aavyy
Studont
caursesTaien
cunentSchecue | 1
savedSchedules
major WishList
year Cinss
e ARG ACIVE) =
iogou k [Al insiucor
reateocount() 1 fromovecivy(in + Aciviy) Coursa oy Location
T
T T Separimert s [T Tiing
! . FT I 1
| - + fosciion | favaner
| Coursesearcher ['
i b lﬁ
—— frE !
[ererForGamatn et i [Scheduiesearcher]
(B 0 Soction

[Findschedues)

RequredCourse

4. Process view
[image: image3.jpg]Student

CourseSearcher Database

Schedule

| Searches fora course |

Queres the Database

Relums available courses

|
T Acd course 0 the Schedule;

|
Rotlims new schecule wih updated ourses

o

[image: image4.jpg]Stugent

‘ScheduleSesrcher Wishtist

Datsbase.

' I
Wants schedule made from WishLis{ classes

et ciasses and courses from WishList

[e ——t
Returhs classes and courses on WishList

Query the Database to expand sact! o the courses info possible classes
y i

R ot e schutls

s

'
Run search aigorhin o find allpossible scheduies

etus al possile schedules| '
______ i

5. Database Schema

[image: image5.jpg]Wishlist

Administrators

FK1 |userName
FK2 |classCode password
Students
hasTaken
7K [department
password [T LT eome PPk | courseNumber
e iz | dopariment
SEm

PK [classCode

Schedules. Leauyesr ClassesByCourse
—» time [———PKFK1 [classCo
credits
scheduleName classSize FK2 |department
FK1 | userName studentsEnrolled FK2 [courseNumber
FK2 |classCode
Locations
Teachers Quizzesalabs

PKFK1 |classCode

PKFK1 | alCods

building
name FK2 |classCode roomNumber

6. Design Alternatives and/or Assumptions
We chose Adobe Flex for our front end over other technologies like JavaScript and AJAX because of the feature-rich (and free for students) Adobe Flex Builder development tool and the cross-browser compatibility of the Flex platform.

We decided to use PHP for our web server instead of ColdFusion or Ruby because our team has the most experience in PHP. In choosing PHP, however, we made the assumption that PHP could interface with Flex as well as the other languages.

Our architecture assumes that our MySQL database can actually get the course information from the UW.

In our class structure diagram, we chose to have a specific object to encapsulate searching and search results, rather than have searching be handled by Student or WishList objects. We did this to make searching cleaner and easier to deal with. We also chose to have Class objects inherit from Activity objects in order to allow students to designate other activities besides classes in their schedules, effectively flagging a block of time as “busy,” and preventing the schedule finder from adding classes to that period of time.

In our database schema, we differentiated between courses and classes (where a class is a specific instance of a course) in order to keep the classes table as lightweight as possible because it is going to be searched many times. Additionally, by separating our courses and classes we keep our database as small as possible by avoiding repeated data. We continued this trend by separating our locations and teachers from the class table, because the location and teacher are not particularly relevant to searches for schedules as those searches will hinge on the class name and time the class is offered. By exporting the extraneous data to other classes we will shorten the amount of time spent searching for classes, as well as reducing load on system RAM because not as much data will be loaded into memory.

Development Plan
1. Team Structure

Our team structure is based around three main teams, with a couple of managerial positions to handle planning and bookkeeping. Our two managerial positions are our project manager, and communications manager. Chad is our project manager, and is responsible for running meetings, maintaining our team website, and ensuring that all of our assigned tasks are completed. Jacob is our communications manager, he coordinates with our customer and client groups to set up meetings, attends those meetings, and makes sure that the results of those meetings are communicated to the rest of the team.

Our team of six is broken up into three groups of two for the programming side of our project. Zack and Allan make up the databases team. They are handling the database design and setup, and will make sure that our database reflects the actual UW registration and course databases as closely as possible.

Chad and James are our PHP team. They will write the PHP code that lives on our web server, and facilitates communication between our front end GUI and our back end database. Our front end team, Alyssa and Jacob, will be writing our Flex-based front end. They will make sure our app provides the combination of ease of use and functionality that will make our product successful. At this time we do not have a dedicated testing team. Each group of two will be responsible for testing their own portions of the code. As groups start to finish their third of the project, more in-depth testing will be performed by a combination of group members.

Our group meets every day in class, as well as Sundays and Fridays every week. Some weeks we add extra meetings to accommodate due dates. We communicate amongst ourselves with our email list, and a website we have set up. We use the email list for quick communication, and on the website we post files, minutes of our meetings, and revisions of documents to be turned in. We also have a Google calendar set up with everyone's schedules so everyone is on the same page.

2. Project Schedule

	Task Milestone
	Estimated Effort
	Date Due
	Personnel

	Find somewhere private to store files/information
	1 day
	4/23/2008
	Chad

	Figure out more on Flex
	1 day
	4/23/2008
	Jacob

	Set up BugZilla
	1 day
	4/23/2008
	Alyssa

	SDS: DB Schema
	1 day
	4/27/2008
	Zack

	SDS: Documentation Plan
	1 day
	4/27/2008
	Alyssa

	SDS: Write up Team Structure
	1 day
	4/27/2008
	Jacob

	SDS: Architecture UML Class Diagram
	1 day
	4/27/2008
	Chad

	SDS: “Register for a course” Sequence Diagram
	1 day
	4/27/2008
	Allan

	SDS: Testing Plan
	1 day
	4/27/2008
	James

	SDS: Explanations of Design Choices
	1 day
	4/27/2008
	Jacob

	SDS: “Add a course” Sequence Diagram
	1 day
	4/27/2008
	Alyssa

	SDS: Project Schedule
	1 day
	4/27/2008
	Chad

	SDS: Architecture Picture Diagram
	1 day
	4/27/2008
	James

	SDS: Risk Assessment
	1 day
	4/27/2008
	Chad

	SDS: Presentation
	1 day
	4/28/2008
	Chad

	ZFR: 4
	1 day
	4/30/2008
	James

	ZFR: 6
	1 day
	4/30/2008
	Chad

	ZFR: 2
	1 day
	4/30/2008
	Allan

	ZFR: 1
	1 day
	4/30/2008
	Zack

	ZFR: 3
	1 day
	4/30/2008
	Alyssa

	ZFR: 5
	1 day
	4/30/2008
	Jacob

	Set up Database
	2 days
	5/4/2008
	Zack and Allan

	Log in to student account
	1 day
	5/6/2008
	All

	Search by Course name
	3 day
	5/7/2008
	All

	View a schedule
	1 day
	5/10/2008
	All

	Add a class to a schedule
	1 day
	5/11/2008
	All

	Turn in Beta 1
	1 day
	5/12/2008
	Chad

	Pseudo-Register your schedule with UW
	1 day
	5/14/2008
	Alyssa and Jacob

	Clear a schedule completely
	1 day
	5/15/2008
	Chad and James

	Remove a class from a schedule
	1 day
	5/16/2008
	All

	Display how much time to next course
	2 days
	5/16/2008
	All

	Designate a time period where the student is busy
	2 days
	5/18/2008
	All

	Turn in Beta 2
	1 day
	5/19/2008
	Chad

	Add an entire schedule
	4 days
	5/24/2008
	All

	Save your schedule(s)
	1 day
	5/25/2008
	All

	Search by Department
	3 days
	5/28/2008
	All

	Color coded visual schedule and search results
	1 day
	5/29/2008
	Alyssa and Jacob

	Load your schedule(s)
	1 day
	5/30/2008
	All

	View highlighted course locations on campus map
	3 days
	6/3/2008
	Alyssa and Jacob

	Turn in Final
	1 day
	6/6/2008
	Chad

	Search by Time slot
	3 days
	6/6/2008
	All

	Rate schedules based on how helpful they are to the student
	4 days
	6/6/2008
	Chad and James

	Track what courses a student has taken
	3 days
	6/6/2008
	Chad and James

3. Risk Assessment

	Risk
	Chance of Occurring
	Impact
	Prevention
	Reaction

	Flex and PHP might be hard to use together.
	L
	H
	Explore the documentation of how to integrate PHP code with Flex.
	Work together to share pertinent interface information.

	Steep learning curve for Flex and PHP.
	L
	M
	Read documentation.
	Use pair programming between experienced programmers and inexperienced programmers.

	UW’s DB is too big and confusing to use efficiently.

	M
	H
	Talk to Time Schedule DB Admins to get a better grasp of their DB.
	Import data into a schema that’s more easily understood by coders.

	Search algorithm for schedules has poor performance.
	M
	L
	Research algorithms.

Keep the size of table entries small for faster queries.
	Improve external components of search algorithm.

	Too much information to present to the user at one time.
	M
	M
	Designing the UI to be simple and user friendly while providing sufficient information.
	Get customer feedback and determine what is confusing or overwhelming and explore ways to simplify the UI.

Test and Documentation Plan

1. Test Plan
Unit Test Strategy

For every function/module, a unit test will be written and run by both the original author as well as another member of the team, based on the function/module specifications to reduce the chance of having something overlooked. Unit tests will be run every time before a change in a function/module is committed to the repository. Unit tests will be updated/re-written every time a function/module specification is updated. We will be using FlexUnit for testing code written for Adobe Flex, and PhpUnit for testing PHP code. Both testing frameworks are based on JUnit.

System Test Strategy

System tests will test both the individual sub-systems as well as how each sub-system integrates with the entire system. System tests will be created based upon various use case scenarios for our product. System tests will be run whenever a sub-system is updated. System tests will be updated whenever new use cases are designed for the product.

Usability Test Strategy

Usability tests will test how easily and efficiently a user can accomplish a stated "goal" of our product. Usability testing will be conducted by the intended customers of our product. Usability tests will be conducted at (ideally) every milestone.

Adequacy of Test Strategy

Because our system is a client-server architecture that communicates over the internet, we cannot fully anticipate all the possibilities of scenarios that might arise over such a volatile communication medium.

Bug tracking mechanism and plan of use

We will be using the BugZilla bug tracking software to manage bugs found in our product. We will use the software to report and assign certain team members to a specific bug, and track the progress of the bug until it is resolved.
2. Documentation Plan

The documentation we plan to deliver with our product is primarily for admin programmers. We plan to do thorough API documentation on each of our classes. We’re going to thoroughly comment all of our code, as well as providing a general API in our final release.

As far as users go, we were not planning on having help menus. We will use tool-tip pop ups instead and will be keeping track of the ease of use through usability tests. The tool-tip pop-ups will only appear for users who have been hovering over a button for a long period of time (roughly three seconds). This method targets the confused user but would also give a user who doesn’t want to use tool-tips the option of turning them off. We may also provide a short introductory tutorial that highlights some of our application’s main features. This tutorial would be displayed when the user first registers with our system.
Internet

Flex Client

PHP Server

Apache Server

UW Courses Data

MySQL Database

