Visual Schedule Finder

Peter Beckfield, My Cam, Rylan Hawkins, Jordan Hoyt, Sandra Li, Devy Pranowo

Visual Schedule Finder

Peter Beckfield

My Cam

Rylan Hawkins

Jordan Hoyt

Sandra Li

Devy Pranowo

System Design Specification and Planning Document
Draft 1
April 27, 2008
CSE 403 - CSRocks Inc.
Revisions

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	1
	Rylan Hawkins, Jordan Hoyt, Sandra Li, Peter Beckfield, Devy Pranowo
	Rylan contributed system architecture information, along with a page diagram and two different views of our system. Jordan added in team roles and responsibilities. Sandra added the project schedule and included information about the system and usability test strategies. Peter discussed our risk assessment, along with our unit test strategies and bug-tracking methodology. Devy created our database schema and discussed user and technical documentations.
	04/27/08

System Architecture
Introduction

The system architecture is primarily that of a Web application. This Web application has primarily one page where all interactivity takes place. This page has heavy browser-side code and JavaScript from which it makes AJAX calls to gather or post additional data stored on the server. The following diagrams articulate how the user perceives the display, how the objects within the browser-side code are laid out, and what interaction sequence the parts of the system take to log in a user and for a user to view a specific schedule.

For the most part, the architecture is a single HTML page with JavaScript manipulating the HTML and keeping track of data, while making requests via AJAX to server-side pages built using Ruby on Rails to update that data.

Page Diagram

This diagram displays the user interface the user will see and how the specific pages will interact. The particular panels are divisions on the interface that have JavaScript behind them that control interaction with other panels.

[image: image2.png]3Ipaus 01 ppe 03 ssE3 SPIP 0T

(@simoo)ppe <,

T
ST 354003 AN 01 Y. P10 9

Susisinne ssitep |

wwwwwwwwwwwwww N
(3(qouos(piarILHaERdn Ty 40 hmdsp fensin 35

12> xely NOSRa6 ¢

1 10 S1wawND1 MR 01
Tt?n 1193ds 5350043 17 °

ul paB6T T

i
| wIpms

I P (-

Design View – JavaScript Class Diagram

The Web application has several JSON Objects where all data is stored in on the browser-side. The layout and details of these JSON Objects are detailed below:
[image: image3.png]User

[+fname : string
+Iname : string

——@{+email

1 | +username : string
1 -password : string
-type : string
MyCourseList ‘
+add(course : Course) 1
-postToDB() CourseHistory
-renderHTML) [+add(course : Course)
-postToDB()
1<% -renderHTML)
DegreeReq
[+name : string . 1
‘ Course
+department : string
. +number
RegsSet CourseGroup
+name : string

¢

Req

+name

string

+prerequisites

+types
+classes

+status : string
+enrollment

+add(class : Class)
-postToDB)
-renderHTMLO

Class
+sln - int
+courseld : int
+sectionld - string

+building : string
+room : string
+instructor : string

+limit : int
+grades : s
+crsFee : string
+other : stri
+notes : string

Process View – Sequence Diagrams
The following diagram shows the interaction between the panels, objects, and backend model or database used when a user logs into the system, and when the user wants to view a particular visual schedule based off of courses required for a certain degree.

[image: image4.png]NOSf NOSf

IWLH IWLH
Xviv
(uospip) (uosf-synsa)
a¥a sunsayypieas
7 Xviv
IWLH
joued
- preasauyY,
(0PeoTUO YO (1P Lonngbayaa163q
IWLH
(uiy-puedbaisaiBap) jpuey bayesiBaq
IWLH
(P 12pjoyade|d [URq UIR,
J9pUL INPALDS [eNSIA Siuswialinbay 931630 joueg
(uiy-puedysn) aued 45A suonng ASITRSINOIAN,

(IWIY*JSA) 33B4I31U] JBSN (4SA) 19pUl4 ANP3YDS [en

[image: image5.png]e ——

aed uibo] paiosia 6

sppueg bayaaibaq
15I7RSIN0DAN
‘sasin0auIRY L

ainpatps
1T INODAN
‘Aio1siH351n03 19

951725103126 °§

ubo wapms

| Y
,)

Database Schema

The following is the schema of our database, which details which tables we will create to store our data, and how the tables interact and relate to each other:

[image: image1.png]& Course_Prerequisite
FK2 | courseid Fk1 | courseid
FKL [typeid FK2 | prereaid
optionalgroup
Type
Course. User Class
typename
PK [id PK Pk [sin
S |department | | [fame FKL [courseid
> number Iname section
name username. credits
description password status.
credits isadmin enrolment
Y'Y y'y limit
grades
coursefee
notes
other
User_MyCourseList User_CourseHistory User_schedule Class_Meeting,
P i
FK2 |userid B2 |userid FK1 [userid FKL [sinid
FK1 | courseid FKL | courseid FK2 | sinid meetingtime
building
room
instructor

Design Alternatives and/or Assumptions

The only major design alternatives are to separate the single Web application page into several pages. This would require a page refresh and would not flow as smoothly, but may be easier to implement with Ruby on Rails. This would therefore make two pages, a degreereq.html and vsf.html page, each with their respective panels and both with the RefineSearch and MyCourseList panels.

There are no particular assumptions other than the assumption that Ruby on Rails will be customizable enough not to fit completely with their predefined standards. This means that Ruby will really only have a controller for the User, Degree Requirements Document (DRD) and be able to easily post the course lists to the database.

Development Plan
Team Structure
Roles and Responsibilities

· Project Manager / System Architect – Rylan
Responsible for maintaining the project's vision and for keeping the work of the group in line with the overall goal. In charge of leading the group by designing the system architecture for the group to work within.

· Team Administration / Customer Contact – My, Sandra, and Devy
Responsible for upkeep of the team website, mailing list and other forms of group organization, and for keeping agenda for team meetings. In charge of keeping in contact with our customer and scheduling meetings as needed.

· HTML / CSS Design – Devy and Rylan
Responsible for setting up the main skeleton of HTML code for the JavaScript to interact with and for designing CSS code that defines how the site will appear to the user.

· JavaScript / Integration – Jordan and Sandra
Responsible for writing JavaScript code that interacts with both the HTML of the site and the Database back-end. In charge of ensuring a smooth integration between the two.

· Database / AJAX – Peter and Xia
Responsible for designing the various aspects of the database and the AJAX that will interface with it.

· Testing / Quality Assurance – Entire Team
Each pair is responsible for doing its own testing and quality control. Since most groups are made up of pairs, each member can perform this task for others with the same role. Further, the member of each group who is listed first will act as leader for that group.

Team Communication

The team will meet weekly on Thursdays at 3:30, and as needed. A mailing list has been set up for keeping in contact with the group through email and a Google Site has been created in place of a wiki. The Google Site holds information about each member (including their status reports) and the progress of the project, among many other items pertinent to the team’s functioning.
Project Schedule

	Task / Milestone
	Estimated Time
	Due Date
	Resource(s)

	Plan and sketch out system architecture
	1 day
	April 27
	Rylan

	Plan out database schema
	1 day
	April 27
	Devy

	System Design Specification Complete
	
	April 28
	Team

	Set up SVN
	1 day
	April 28
	Jordan

	Explore automated testing
	1 day
	April 28
	Rylan

	Explore database interactions
	1 day
	April 29
	Sandra and Xia

	Create scripts for daily builds
	1 day
	April 29
	Jordan

	Set up bug database
	1 day
	April 29
	Peter

	Set up initial database schema
	1 day
	April 29
	Devy

	Set up initial objects
	1 day
	April 29
	Rylan

	Create function/method signatures
	1 day
	April 29
	All

	Create HTML skeleton
	1 day
	April 29
	Devy

	Develop color scheme/basic CSS
	1 day
	April 29
	Rylan and Devy

	Development Environment Setup Complete
	
	April 30
	Team

	Create functioning User JSON object
	2 days
	May 2
	Rylan

	Create functioning Course and Class JSON objects
	2 days
	May 2
	Rylan

	Create functioning CourseHistory, MyCourseList, and Schedule JSON objects
	2 days
	May 2
	Rylan

	Create functioning DegreeReq, ReqSet, Req, and CourseGroup JSON objects
	2 days
	May 2
	Rylan

	Create functioning refined search JSON object
	2 days
	May 2
	Rylan

	All JSON Objects Complete
	
	May 2
	Team

	Write the JavaScript for the DegreeRequirements panel
	3 days
	May 5
	Jordan and Sandra

	Write the JavaScript for the VisualScheduleFinder panel
	3 days
	May 5
	Jordan and Sandra

	Write the JavaScript for the MyCourseList panel
	3 days
	May 5
	Jordan and Sandra

	Write the JavaScript for the RefineSearch panel
	3 days
	May 5
	Jordan and Sandra

	Create interactions between the different panels
	2 days
	May 5
	Jordan and Sandra

	Create correct panel swapping – for main panel
	2 days
	May 5
	Jordan and Sandra

	Create database connection to store student information
	2 days
	May 5
	Peter and Xia

	Connect to UW database to obtain class information
	2 days
	May 5
	Peter and Xia

	Panel Interactions and Database Backend Complete
	
	May 5
	Team

	Create Student Login page interface
	2 days
	May 7
	Devy and Rylan

	Create Degree Requirements page interface
	2 days
	May 7
	Devy and Rylan

	Create Visual Calendar interface
	3 days
	May 7
	Devy and Rylan

	Create MyCourseList interface
	2 days
	May 7
	Devy and Rylan

	Front End Complete
	
	May 7
	Team

	Test student profile creation, logging in
	1 day
	May 8
	Team

	Beta Release Complete
	
	May 12
	Team

	Create Administrator Login page interface
	2 days
	May 17
	Devy and Rylan

	Create Super Administrator Login page interface
	2 days
	May 17
	Devy and Rylan

	Finalize interfaces and test that everything is working correctly
	2 days
	May 18
	Team

	Beta Release 2
	
	May 19
	Team

	Get Customer Evaluations
	1 day
	May 19
	Rylan, Sandra & Devy

	Create keyword search functionality
	4 days
	May 26
	Peter and Xia

	Create link to map of classes
	3 days
	May 26
	Peter and Xia

	Create functionality for Administrators
	2 days
	May 27
	Jordan and Sandra

	Modify database interactions for administrators
	2 days
	May 27
	Peter and Xia

	Incorporate any suggestions from customers
	Variable
	June 5
	Team

	Final Release Complete
	
	June 5
	Team

Risk Assessment

	Risk
	Chance of occurring (H, M, L)
	Impact if it occurs (H,M,L)
	Steps taking to increase chance it won’t occur
	Mitigation plan should it occur

	Being unable to replicate degree requirements usefully
	Medium
	Low
	Spend extra time on creating a solid data structure to handle all the permutations of possible class requirements.
	Reduce the functionality of the Degree Requirements page and rely on the user to self-check themselves for “corner cases”.

	Being unable to gracefully display conflicting schedules
	Low
	Low
	Multiple team members will be working on this portion of the site to ensure quality.
	Change the way we display conflicting schedules, regardless of how aesthetically pleasing it is.

	Browser incompatibility
	High
	Could vary from high to low
	Frequent usability tests to ensure that new code is compatible with supported browsers.
	Depending on the severity of the incompatibility, reducing functionality to accommodate problem browsers.

	Being unable to meet deadlines
	Medium
	Medium
	Using quick communication and many smaller milestones to ensure the entire team is on track.
	Team members from other roles will help the part of the team having issues

	Problems in communication impede progress
	Medium
	High to Low
	Share information with all team members on the team website so that potential mis-communications can be caught and resolved quickly.
	Fix as necessary on a case-by-case basis.

	Being unable to interface effectively with the existing UW course database
	Medium
	Medium
	Meet with a UW representative early to obtain necessary information and allow plenty of time for integration.
	Manual entry/editing of database to provide necessary information for our system functionality

Test and Documentation Plan

Test Plan

Unit Test Strategy

We will be using JSUnit to test all of our JSON objects. These tests will be maintained by the Database and AJAX/JSON team and exercise all of the functionality required by the JavaScript and Integration team. If new functionality is discovered to be needed, the tests will be updated to reflect this. Before checking in any changes to JSON code, the tests will be run. JSUnit creates HTML that can be checked easily to ensure that the objects are still working properly. Optimally, any failed tests will be fixed before the file is ultimately checked in.
System Test Strategy
Our system test strategy will test the different features and interactions of the various JSON objects we will implement for our system. More specifically, we will test each individual feature to ensure that it works correctly and returns the correct information. Once that is done, we will test their interactions with each other to make sure that they work together to provide the necessary functionalities, such as adding a course to MyCourseList, or adding a course to the visual calendar. We will test the persistence of student accounts, to ensure that when they log in, all their information is accurate, and their course lists contain all the correct information from the last time they logged into the system. We will also test that the Degree Requirements and Visual Calendar panels swap correctly as necessary on our page. Lastly, we will test all the different account types on our system, ensuring that student and administrator accounts behave appropriately and are clearly distinct from each other. These tests will be developed by the pairs who are responsible for the object.

We will run these tests at least as often as each object is completed. Undoubtedly, we will run our tests at each milestone, especially for our Beta and Final releases, and when we are ready to integrate elements together.

Usability Test Strategy

Since our system is so heavily dependent upon users, we will put extra emphasis on our usability testing. Our goal through our usability tests is to see how users interact with our system, whether or not they find it easy to navigate and complete desired functionalities, and whether they are satisfied with the results of their actions. Specifically, we will use a variant of a strategy called “contextual inquiry,” where we will watch as users perform a series of tasks on our system. We will record some statistics about how long it takes them to perform those tasks, as well as ask them questions as they work, to get an idea of the type of user-experience they are encountering. Once that is done, we will take any feedback or suggestions they may have for us.
To complete this phase of testing, we, as a team, will draft a few tasks for a user to complete; tasks that will highlight some of the key features of our system, including logging in, selecting courses based on a desired major, and adding courses to the visual calendar.

We will run these tests at each release of a new functionality, and when we meet with our customers. We will try to perform these tests as often as possible, since getting customer feedback is the best way for us to keep them happy and satisfied.
Adequacy of Test Strategy

We believe that our test strategy is sufficient and adequate because it starts from the ground up. Our unit tests work to ensure that each individual component works correctly. We have an effective system where two people pair up to work on the same aspect of our project – one as lead, and one as secondary person. This is almost a variant of the pair programming style. By employing this method, the lead person in charge of a component can write the white box tests, while the secondary person writes black box tests. With two people testing one element, there is less chance for bugs, and in the event that bugs are found, it will be easier to identify and solve the problem.

Since our application is heavy on the user-interface side, the usability tests will be a huge consideration for us. Using our System Requirements Specification as a guide to create task lists for our users, we will be able to tell them what steps to follow, and watch as they proceed through the tasks, frequently acquiring feedback and/or suggestions from them. By doing this, we will be able to examine our system flow to see whether it makes sense, and if it is easy to use, based on what our customers and usability testers have to say.

Bug Tracking Mechanism and Plan of Use
If, for whatever reason, we run into any bugs that the pair of coders cannot immediately resolve, then this failure will be tracked using Bugzilla. The bug description should mention which test failed and what steps to take to reproduce the failure to allow any team member the ability to assist in troubleshooting the bug.

Documentation Plan

User Documentation

We will have an online user documentation to help users learn how to use Visual Schedule Finder application. This will be available under the Help menu of our application and will include screenshots of how to perform particular actions, such as adding a class or searching for a class.

The user documentation on the Visual Schedule Finder application Web site is written for both general users (students) and administrators. The user help menu will include a descriptions on how to execute a broad range of Visual Schedule Finder functionalities, such as how to search for classes by keyword, name, or course numbers, how to add classes through the “Degree Requirements” page to the visual schedule, and how to narrow searches by applying filters.

The administration aspect of the help menu will guide the administrators in how to modify time schedules and course listings, and how to alter the degree requirements.

The main help page will have a table of contents that lists all the activities that the application supports (refer to the Feature List on the Software Requirements Specification). Each activity also includes different scenarios describing how users will adapt the software to their needs. Not only will the document have descriptions, but it will also have mockups. We will also have an alphabetized indexing menu, based on important key phrases such as degree requirements, block times, account, logging in, searching, filtering, and add course. Lastly, we will include a demo/tour of the Visual Schedule Finder.

To ensure the relevancy of the user documentation and to guide us in the right direction as we choose what features to include in it, we will contact potential users of the software, including CSRocks, Inc executives and our customers after the Beta release. We will meet with these users frequently to have them perform tasks on our application and observe how they use our application. From there, we will record which scenarios seem to pose as the biggest challenges and create documentation for those activities.

Technical Documentation

As we develop, we will be required to comment our code and make note of how different parts of the code operate within the source code. We will ensure that all our self-defined methods are clearly commented so that other team members will understand the purpose that our method serves within each class/object. Our comments and notes will be written according to the following standards:
· A general description at the top of each file

· Code with good style, using straight forward and clear variable and method names.

· Clear description of each method

· Clear layout/indentation. Use 4 spaces, instead of TABS.

· Clear comments on the code to explain complicated or tricky code.

· Comments must be up to date

· Other developers must be able to pick up the code and immediately understand it.

Developers will also need to write an overall view of how the program is organized. It should include the problem definition and higher level notes of architecture and implementation of a feature. Later on, these documents will be put together in one document, separate from the source code.

