

OfCourse

Ziling Zhao, Aron Hershberger, Cosmin Barsan, Nick Brekhus, Ryan Timmons,

Cedar Bristol

Software Requirements
Specification

Draft 1

4/18/2008

CSE 403 - CSRocks Inc.

Revisions

Version Primary
Author(s)

Description of Version Date
Completed

0.1 All First Draft 04/18/2008

Overall Description

Description

OfCourse, a community course evaluation facilitator. Allows users to review or submit feedback on courses,
professors, and offerings (a particular course professor combination). The goal of which, is to assist students
in choosing their courses and professors. Similar to existing "rate my professor" systems, only allowing a
student to rate courses as well as professors and providing detailed metrics. The goal is to facilitate detailed
exchange of experience between students and feedback to professors in more detail than currently existing
systems.

Scope

The system will provide student feedback on courses to students and professors.

The hardware will be a web server running Apache. The software will be written with Ruby using the Rails
framework. Our RDBMS will be MySQL. For the user interface, we will be creating a web page (standard
XHTML, CSS, Javascript). We will be using jQuery for our javascript framework.

Use Cases

1. Use case summary diagram

2. Two (2) formal use cases for scenarios that are two of the most important to the product.
Use Case 1

Goal The site user accesses the site to decide between taking class A or class B, expects
to see detailed information submitted by other site users on grading, relevance,
teaching style and other course related information.

Level Summary
Primary Actor The site user, a student.
Precondition The primary actor already knows the basic information about the course(s)

including the course name and instructor. Primary actor is at the search screen on
the website.

Success end condition The student has decided what class (A or B) to take after viewing and comparing
the user-submitted information on class A and class B.

Failure end condition The primary actor was unable to find relevant information to make a decision on
which class to take.

Trigger Primary actor accesses the web application url.
Main success scenario 1) Primary actor searches for information on course A particular to the

current instructor, by typing in the course name in the ‘course’ field and
professor name in the ‘instructor’ field and clicking the search button.
2) System responds by displaying a list of matches to the search.
3) Primary actor clicks on the desired list item and system responds by
displaying the information page for that course-professor offering.
4) Primary actor reads through the list of user comments about their
experience taking course A from the particular instructor
5) Primary actor repeats steps 2 and three with course B.
6) Primary actor uses the information to decide which course to take.

Extensions 2a) The system is unable to find any results 3for the search. The system displays a
page with the message “No results found” with a link “add this course-professor
offering.” (see user case 2)

6a) While taking the selected class, the primary actor finds that the information on
the site used to select the class was misleading. The primary actor then decides to
return to the site and submit a comment his/her experience taking the class (see
user case for comment submission).

Variations 1’) The primary actor may browse to the site using:
-Internet Explorer
-Firefox
-a browser on a mobile device

Use Case 2:

Goal The site user has finished taking a course and wants to express his/her opinion on
the course and/or professor.

Level Summary
Primary Actor The site user, a student
Precondition The student knows what class he/she has taken, knows the professor’s name.
Success end condition The primary actor is able to find/create the offering (course and professor

combination) and is able to contribute to the information.
Failure end condition The primary actor was unable to find/add the offering,

or,
The primary actor was unable to contribute information to the site.

Trigger The primary actor searches web site for a particular offering and activates one of
the user submission controls (‘add comment’ button, or one of the rank course
aspect controls).

Main success scenario 1) Primary actor searches for information on a course particular to the
current instructor, by typing in the course name in the ‘course’ field and
professor name in the ‘instructor’ field and clicking the search button.
2) System responds by displaying a list of matches to the search.
3) Primary actor selects the desired item from the list.
4) System responds by displaying the information page for that course-
professor offering.
5) Primary actor clicks the add button and adds a comment expression
his/her opinion of the course and/or professor. System responds by storing
the information in the database.
6) Primary actor closes page.

Extensions 2a) The system did not find any matches for the user’s search. The system displays
a page with the message “No results found” with a link “add this course-professor
offering.”

Variations 1’) The primary actor may attempt to submit comments using:
-Internet explorer
-Firefox
-Browser on a mobile device

5’) The Primary actor may also attempt to submit comments that:
-contain Unicode characters
-are irrelevant

5’’) The primary actor is unwilling to spend the time necessary to write a text
comment so instead the primary actor uses the rank feature to vote (on a scale of
1-5) on the class difficulty, grade policy, study material availability, ability to
contact instructor.

Features

Add new courses to the list Beta
Add new instructors to the list Beta
User modifiable course descriptions Beta
User editable course metrics (easiness, grading, amount learned, relevance, "fun"ness) Beta
Associate various data with each course - (instructors, when offered, alternatives) Beta
Add freeform user comments to courses Beta
Add freeform user comments to instructors Beta
Associate various data with instructors (easiness, graded fairly, gives out past exams, how
responsive to email, etc.) Beta

Search for courses based on any of the associated information Beta
Assign weights to metrics and search for courses that match those metrics (advanced search) Final
Allow users to rate comments left by others as helpful/unhelpful Final
Allow users to flag comments as inappropriate Final
Sort comments by user rating when displayed Final
Automatically remove comments flagged inappropriate based on some algorithm Final
Users sign up for an account in order to leave comments Final
Verify user has a washington.edu email address when they sign up for an account Final
Attach username to all changes made Final
Allow users to store additional personal info (major, classes taken, classes needed/wanted) Final
Allow users to view all their own comments in one place Stretch
Allow (limited) text formatting/html in comments Stretch
Course wikis Stretch
Course discussion (about the course material) Stretch
DARS++ Past courses taken accounted for, would have to allow for manual overrides of
requirements, Optional/Conditional course requirements tag, required courses, use long-term
scheduler to plan accordingly, Courses needed to major in X, Courses relevant to other
majors/minors

Stretch

UI Prototype

 Landing:

Browse:

View Item:

Advanced Search:

