
3/3/2009

1

CSE403: Software Engineering

David Notkin

Winter 2009

Program invariants

• Invariants can aid in the development of correct programs

– The invariants are defined explicitly as part of the 

construction of the program

• Invariants can aid in the evolution of software as well

• In particular, programmers can easily make changes that violate 

unstated invariants

– The violated invariants are often far from the site of the 

change

– These changes can cause errors

– The presence of invariants can reduce the number of or cost 

of finding these violations

3/3/2009 2

But…

• …most programs have few invariants explicitly 

written by programmers

• Ernst’s idea: trace multiple executions of a program 

and apply machine learning to discover likely 

invariants (such as those found in assert statements 

or specifications)

– x > abs(y)

– x = 16*y + 4*z + 3

– array a contains no duplicates

– for each node n, n = n.child.parent

– graph g is acyclic

– …
CSE403 Wi09 3 3/3/2009 4

Example: Recover formal specification

// Sum array b of length n into

// variable s

i := 0; s := 0;

while i  n do

{ s := s + b[i];  i := i + 1 }

• Precondition: n  0

• Postcondition:  S = 
0  j < n

b[j]

• Loop invariant:

0  i  n  and  S =  
0  j < i

b[j]

Test suite: first guess

• 100 randomly-generated arrays

– length uniformly distributed from 7 to 13

– elements uniformly distributed from –100 to 100

3/3/2009 5 3/3/2009 6

Inferred invariants

ENTRY:

N = size(B)

N in [7..13]

B: All elements in [-100..100]

EXIT:

N = I = orig(N) = size(B)

B = orig(B)

S = sum(B)

N in [7..13]

B: All elements in [-100..100]



3/3/2009

2

3/3/2009 7

Inferred loop invariants

LOOP:

N = size(B)

S = sum(B[0..I-1])

N in [7..13]

I in [0..13]

I <= N

B: All elements in [-100..100]

B[0..I-1]: All elements in [-100..100]

Example: Code without explicit invariants

• 563-line C program: regular expression search & 

replace [Hutchins][Rothermel]

• Task: modify to add Kleene +

• Complementary use of both detected invariants and 

traditional tools (such as grep)

3/3/2009 8

3/3/2009 9

Programmer use of invariants

• Helped explain use of data structures

– regexp compiled form (a string) 

• Contradicted some maintainer expectations

– anticipated lj < j in makepat

– queried for counterexample

– avoided introducing a bug 

• Revealed a bug

– when lastj = *j in stclose, array bounds error

3/3/2009 10

More invariant uses

• Showed procedures used in limited ways

– makepat

start = 0 and  delim = ’\0’

• Demonstrated test suite inadequacy

– #calls(in_set_2) = #calls(stclose)

• Changes in invariants validated program changes

– stclose:  *j = orig(*j)+1

– plclose:  *j  orig(*j)+2

Experiment 2 conclusions

• Invariants

– effectively summarize value data

– support programmer’s own inferences

– lead programmers to think in terms of invariants

– provide serendipitous information

• Additional useful components of Daikon

– trace database (supports queries)

– invariant differencer

3/3/2009 11

Dynamic invariant detection

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect

invariants

• Look for patterns in values the program computes

– Instrument the program to write data trace files

– Run the program on a test suite

– Invariant engine reads data traces, generates

potential invariants, and checks them

• Roughly, machine learning over program traces



3/3/2009

3

Requires a test suite

• Standard test suites are adequate

• Relatively insensitive to test suite (if large enough)

• No guarantee of completeness or soundness

• Complementary to other techniques and tools

3/3/2009 13 3/3/2009 14

Sample invariants

• x,y,z are variables; a,b,c are constants

• Invariants over numbers

– unary: x = a, a  x  b, x  a(mod b), …

– n-ary: x  y, x = ay + bz + c,
x = max(y, z), …

• Invariants over sequences

– unary: sorted, invariants over all elements

– with sequence: subsequence, ordering

– with scalar: membership

3/3/2009 15

Checking invariants

• For each potential invariant:

– Instantiate

• That is, determine constants like a and b in y = 
ax + b

– Check for each set of variable values

– Stop checking when falsified

• This is inexpensive

– Many invariants, but each cheap to check

– Falsification usually happens very early

Relevance

• Our first concern was whether we could find any 

invariants of interest

• When we found we could, we found a different 

problem

– We found many invariants of interest

– But most invariants we found were not relevant

3/3/2009 16

Find relationships over non-variables

• array: length, sum, min, max

• array and scalar: element at index, subarray

• number of calls to a procedure

• …

3/3/2009 17

Unjustified properties

• Given three samples for x:

– x = 7

– x = –42

– x = 22

• Potential invariants:

– x  0

– x  22

– x  –42

3/3/2009 18



3/3/2009

4

Statistically check hypothesized distribution

• Probability of no zeroes (to show x  0) for v values 

of x in range of size r

• Range limits (e.g., x  22)

– same number of samples as neighbors (uniform) 

– more samples than neighbors (clipped)

3/3/2009 19

v

r










1
1

variable value

#
 o

f 
s
a

m
p

le
s

variable value

#
 o

f 
s
a
m

p
le

s

3/3/2009 20

Duplicate values

• Array sum program:

i := 0; s := 0;

while i  n do

{ s := s + b[i];  i := i + 1 }

• b is unchanged inside loop

• Problem: at loop head

– –88  b[n – 1]  99

– –556  sum(b)  539

• Reason: more samples inside loop

Disregard duplicate values

• Idea: count a value only if its variable was just 

modified

• Result: eliminates undesired invariants

3/3/2009 21

Redundant invariants

• Given

0  i  j

• Redundant

a[i]  a[0..j]

max(a[0..i])  max(a[0..j])

• Redundant invariants are logically implied

• Implementation contains many such tests

3/3/2009 22

Suppress redundancies

• Avoid deriving variables: suppress 25-50%

– equal to another variable

– nonsensical

• Avoid checking invariants:

– false invariants: trivial improvement

– true invariants: suppress 90%

• Avoid reporting trivial invariants: suppress 25%

3/3/2009 23

Unrelated variables

3/3/2009 24

b < p

myweight < mybirthyear

int myweight, mybirthyear;

bool b;

int *p;



3/3/2009

5

Limit comparisons

• Check relations only over comparable variables

– declared program types: 60% as many 

comparisons

– Lackwit [O’Callahan]: 5% as many comparisons; 

scales well

• Runtime: 40-70% improvement

• Few differences in reported invariants

3/3/2009 25 3/3/2009 26

Richer types of invariant

• Object/class invariants

– node.left.value < node.right.value

– string.data[string.length] = ’\0’

• Pointers (recursive data structures)

– tree is sorted

• Conditionals 

– if  proc.priority < 0 then

proc.status = active

– ptr = null  or  *ptr > i

Conditionals mechanism

• Split the data into parts

• Compute invariants over 

each subset of data

• Compare results, produce 

implications

3/3/2009 27

x even?

x=1, y=2

x=0, y=0

x=3, y=8

x=4, y=0

x=0, y=0

x=4, y=0

x=1, y=2

x=3, y=8

yes no

if even(x)then

y = 0

else

y = 2x 

Data splitting criteria

• Static analysis

• Distinguished values:  zero, source literals, mode, 

outliers, extrema

• Exceptions to detected invariants

• User-selected

• Exhaustive over random sample

3/3/2009 28

Summary

• Dynamic invariant detection is feasible

• Dynamic invariant detection is accurate & useful

– Techniques to improve basic approach

– Experiments provide preliminary support

• Daikon can detect properties in C, C++, Eiffel, IOA, 

Java, and Perl programs; in spreadsheet files; and in 

other data sources. 

• Easy to extend Daikon to other applications

• http://groups.csail.mit.edu/pag/daikon/

3/3/2009 29


