
19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 1

From Source to Execution

CSE 410, Spring 2006
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 2

Readings and References

• Reading
» Section 2.10, Translating and Starting a Program
» Appendix A.1, Introduction
» Appendix A.2, Assemblers
» Appendix A.3, Linkers
» Appendix A.4, Loading

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 3

Starting a Program

• Two phases from source code to execution
• Build time

» compiler creates assembly code
» assembler creates machine code
» linker creates an executable

• Run time
» loader moves the executable into memory and

starts the program

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 4

Build Time

• You’re experts on compiling from source to
assembly and hand crafted assembly

• Two parts to translating from assembly to
machine language:
» Instruction encoding (including translating

pseudoinstructions)
» Translating labels to addresses

• Label translations go in the symbol table

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 5

Symbol Table

• Symbols are names of global variables or labels
(including procedure entry points)

• Symbol table associates symbols with their
addresses in the object file

• This allows files compiled separately to be linked

0x10006000bigArray

0x01031ff0LabelA:

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 6

Modular Program Design

• Small projects might use only one file
» Any time any one line changes, recompile and

reassemble the whole thing
• For larger projects, recompilation time and

complexity management is significant
• Solution: split project into modules

» compile and assemble modules separately
» link the object files

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 7

The Compiler + Assembler

• Translate source files to object files
• Object files

» Contain machine instructions (1’s & 0’s)
» Bookkeeping information

• Procedures and variables the object file defines
• Procedures and variables the source files use but are

undefined (unresolved references)
• Debugging information associating machine

instructions with lines of source code

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 8

The Linker

• The linker’s job is to “stitch together” the
object files:
1. Place the data modules in memory space
2. Determine the addresses of data and labels
3. Match up references between modules

• Creates an executable file

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 9

Determining Addresses

• Some addresses change during memory layout
• Modules were compiled in isolation
• Absolute addresses must be relocated
• Object file keeps track of instructions that use

absolute addresses

text
text

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 10

Resolving References

• For example, in a word processing program, an
input module calls a spell check module

• Module address is unresolved at compile time
• The linker matches unresolved symbols to

locations in other modules at link time
• In SPIM, “main” is resolved when your

program is loaded

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 11

Linker Example

code:
main:A=area(5.0)

static data:
PI = 3.1415

defined symbols:
main, PI

undefined symbols:
Area

code:
Area:return PI*r*r

static data:

defined symbols:
Area

undefined symbols:
PI

main.o area.o

header
code: main:A=area(5.0)

Area:return PI*r*r
static data: PI = 3.1415
defined symbols: main, PI, Area

main.exe

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 12

Libraries
• Some code is used so often, it is bundled into

libraries for common access
• Libraries contain most of the code you use but

didn’t write: e.g., printf()
• Library code is (often) merged with yours at

link time

main.o

libc.a
main.exe

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 13

The Executable

• End result of compiling, assembling, and
linking: the executable
» Header, listing the lengths of the other segments
» Text segment
» Static data segment
» Potentially other segments, depending on

architecture & OS conventions

19-Apr-2006 cse410-08-link © 2006 DW Johnson and University of Washington 14

Run Time

• When a program is started ...
» Some dynamic linking may occur

• some symbols aren’t defined until run time
• Windows’ dlls (dynamic link library)

» The segments are loaded into memory
» The OS transfers control to the program and it

runs
• We’ll learn a lot more about this during the OS

part of the course

