
5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 1

Virtual Memory

CSE 410, Spring 2006
Computer Systems

http://www.cs.washington.edu/education/courses/410/06sp/

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 2

Reading and References

• Reading 
• Computer Organization and Design, Patterson and Hennessy

» Section 7.4 Virtual Memory
» Section 7.5 A Common Framework for Memory Hierarchies

• Reference
» Chapter 4, Caches for MIPS, See MIPS Run, D. Sweetman

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 3

Layout of program memory

reserved (4 MB)
0000 0000

003F FFFF

0040 0000

0FFF FFFF

1000 0000
1000 FFFF

program (252 MB)

Not to
Scale!

global data (64 KB)

7FFF EFFF stack (grows down)

heap (grows up)1001 0000

~1792 MB

reserved (4KB)7FFF FFFF

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 4

Program Memory Addresses

• Program addresses are fixed at the time the 
source file is compiled and linked

• Small, simple systems can use program 
addresses as the physical address in memory

• Modern systems usually much more complex
» program address space very large
» other programs running at the same time
» operating system is in memory too



5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 5

Direct Physical Addressing

heap
program

stack
physical

memory

program
addresses

physical
addresses

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 6

Physical Addressing

• Address generated by the program is the same as the 
address of the actual memory location

• Simple approach, but lots of problems
» Only one process can easily be in memory at a time
» There is no way to protect the memory that the process 

isn't supposed to change (ie, the OS or other processes)
» A process can only use as much memory as is physically 

in the computer 
» A process occupies all the memory in its address space, 

even if most of that space is never used
• 2 GB for the program and 2 GB for the system kernel

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 7

Memory Mapping

heap
program

stack

physical

memory

heap
program

stack

heap
program

stack

program
addresses

physical
addresses

memory
mapping

disk

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 8

Virtual Addresses

• The program addresses are now considered to 
be “virtual addresses”

• The memory management unit (MMU) 
translates the program addresses to the real 
physical addresses of locations in memory

• This is another of the many interface layers 
that let us work with abstractions, instead of 
all details at all levels



Paging

• Divide a process's virtual 
address space into fixed-
size chunks (called pages)

• Divide physical memory 
into pages of the same size

• Any virtual page can be 
located at any physical 
page

• Translation box converts 
from virtual pages to 
physical pages

0
1
2
3
4
5

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Translation

Virtual 
Page #

Physical 
Page #

0x0000

0x6000

0x0000

0x4000

0x0000

0xE000

Multiple Processes
Share Memory

• Each process thinks it 
starts at address 
0x0000 and has all of 
memory

• A process doesn't 
know anything about 
physical addresses 
and doesn't care

0
1
2
3
4
5

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Translation

Virtual 
Page #

Physical 
Page #

0x0000

0x6000

0x0000

0x4000

0x0000

0xE000

Protection

• A process can only use 
virtual addresses

• A process can't corrupt 
another process's memory
» It has no address to refer to it

• How can Blue write to 
Green's page 2? 
» needs an address to refer to 

physical page 7, but it doesn't 
have one 

0
1
2
3
4
5

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Translation

Virtual 
Page #

Physical 
Page #

0x0000

0x6000

0x0000

0x4000

0x0000

0xE000

Store Memory on Disk

• Memory that isn't being 
used can be saved on disk
» swapped back in when it is 

referenced via page fault
• Programs can address 

more memory than is 
physically available

• This is an important 
reason for virtual memory
» too hard for programs to do 

this on their own (using 
overlays, for example)

0
1
2
3
4
5
6
7
8
9

Translation

Virtual 
Page #

Physical 
Page #

0x0000

0xE000

0x0000

0xA000

Disk

0
1
2
3
4
5
6
7
8
9
10
11
12
13



Sparse Address
Spaces

• Memory addresses that 
aren't being used at all 
don't have to be in 
memory or on disk
» Code can start at a very 

low logical address
» Stack can start at a very 

high logical address
» No physical pages 

allocated for unused 
addresses in between

0
1
2
3
4
5
6
7
8
9

Translation

Virtual 
Page #

Physical 
Page #

0x0000

0x1000000

0x0000

0xA000

0
1
2
3

997
998
999
1000

0x4000

0x0FFC000

Unused

Sharing Memory
• Two processes can share 

memory by mapping two 
virtual pages to the same 
physical page

• The code for Word can be 
shared for two Word 
processes
» code pages are read only

• Each process has its own 
data pages
» possible to share data pages 

too, but less common

0
1
2
3
4
5

Translation

Word

Virtual 
Page #

Physical 
Page #

0x0000

0x6000

0x0000

0xE000

0
1
2
3
4
5

Word

0x0000

0x6000

0
1
2
3
4
5
6
7
8
9
10
11
12
13

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 15

Virtual Address Translation

Translate
Virtual

Page #

Physical

page #

virtual 
address

VPN

Offset

physical 
address

PPN

Offset

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 16

program -> virtual -> physical

virtual page number (20 bits) offset in page (12)

program address (32 bits)

memory management unit

physical page number (n bits) offset in page (12)

physical address (n+12 bits)



5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 17

Page Tables

• Offset field is 12 bits
» so each page is 212 bytes = 4096 bytes = 4KB

• Virtual Page Number field is 20 bits
» so 220 = 1 million virtual pages

• Page table is an array with one entry for 
each virtual page
» 1 million entries
» entry includes physical page number and flags

for example

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 18

Gack!

• Each process has a page table with 1 Million 
entries - big
» no memory left to store the actual programs

• Each page table must be referenced for every 
address reference in a program - slow
» no time left to do any useful work

• But wait, system designers are clever kids

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 19

Page tables - size problem

• The page tables are addressed using virtual 
addresses in the kernel

• Therefore they don’t need physical memory 
except for the parts that are actually used
» see “Sparse Address Spaces” diagram

• Operating System manages these tables in its 
own address space
» kernel address space

5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 20

Page Tables - speed problem

• Use special memory cache for page table 
entries - Translation Lookaside Buffer

• Each TLB entry contains
» address space ID number (part of the tag)
» virtual page number (rest of the tag)
» flags (read only, dirty, etc)
» associated physical page number (the data)

• TLB is a fully associative cache



5-May-2006 cse410-14-virtual-memory © 2006 DW Johnson and University of Washington 21

Using the TLB

ASID Virtual Page Number Offset

ASID Physical Page NumberVPN

Physical Page Number Offset

Program address

TLB

Physical address

...

PPN

...

A Process
Page Table

refill

Process


