
19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 1

Synchronization Part 2

CSE 410, Spring 2006
Computer Systems

http://www.cs.washington.edu/education/courses/410/06sp/

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 2

Readings and References

• Reading
» Chapter 7, Sections 7.4 through 7.7, Operating System Concepts,

Silberschatz, Galvin, and Gagne

• Other References
» The Java Tutorial, Synchronizing Threads
» http://java.sun.com/docs/books/tutorial/essential/threads/multithreaded.html

» http://java.sun.com/docs/books/tutorial/essential/threads/monitors.html

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 3

Shared Stack
void Stack::Push(Item *item) {

item->next = top;

top = item;

}

• Suppose two threads, red and blue, share this
code and a Stack s

• The two threads both operate on s
» each calls s->Push(…)

• Execution is interleaved by context switches

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 4

• Now suppose that a context switch occurs at
an “inconvenient” time, so that the actual
execution order is

1 item->next = top;

2 item->next = top;

3 top = item;

4 top = item;

Stack Example

context switch from red to blue

context switch from blue to red

Disaster Strikes

top

time 0

top

time 1

top

time 2

top

time 3

top

time 4
item->next = top; item->next = top; top = item; top = item;

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 6

Shared Stack Solution

• How do we fix this using locks?

void Stack::Push(Item *item) {

lock->Acquire();

item->next = top;

top = item;

lock->Release();

}

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 7

Correct Execution

• Only one thread can hold the lock

lock->Acquire();

item->next = top;

top = item;

lock->Release();

lock->Acquire();

wait for lock acquisition

item->next = top;

top = item;

lock->Release();

Correct Execution

top top

Red
acquires

the lock

Blue tries to
acquire the

lock

top

Red
releases

the lock

Blue
acquires
the lock

top

top

Blue
releases

the lock

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 9

How can Pop wait for a Stack item?

• This works okay if we don't want to wait inside Pop and can just return <no
data available>

• But in order to wait we need to go to sleep inside the critical section
» other threads won't be able to run because Pop holds the lock!
» condition variables make it possible to go to sleep inside a critical

section, by releasing the lock and going to sleep in one atomic operation

Stack::Push(Item * item) {

lock->Acquire();

push item on stack

lock->Release();

}

Item * Stack::Pop() {

lock->Acquire();

pop item from stack

lock->Release();

return item;

}

Synchronized stack using locks

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 10

Monitors

• Monitor: a lock and condition variables
• Key addition is the ability to inexpensively and

reliably wait for a condition change
• Can be implemented as a separate class

» The class contains code and private data
» Since the data is private, only monitor code can access it
» Only one thread is allowed to run in the monitor at a time

• Can be implement directly in other classes using
locks and condition variables

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 11

Condition Variables

• A condition variable is a queue of threads
waiting for something inside a critical section

• There are three operations
» Wait()--release lock & go to sleep (atomic);

reacquire lock upon awakening
» Signal()--wake up one waiting thread, if any
» Broadcast()--wake up all waiting threads

• A thread must hold the lock when doing
condition variable operations

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 12

Stack with Condition Variables

Pop can now wait for something to be pushed
onto the stack

Stack::Push(Item *item) {

lock->Acquire();

push item on stack

condition->signal(lock);

lock->Release();

}

Item *Stack::Pop() {

lock->Acquire();

while(nothing on stack) {

condition->wait(lock);

}

pop item from stack

lock->Release();

return item;

}

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 13

Synchronization in Win2K/XP

• Windows has locks (known as mutexes)
» CreateMutex--returns a handle to a new mutex
» WaitForSingleObject--acquires the mutex
» ReleaseMutex--releases the mutex

• Windows has condition variables (known as events)
» CreateEvent--returns a handle to a new event
» WaitForSingleObject--waits for the event to happen
» SetEvent--signals the event, waking up one waiting

thread

19-May-2006 cse410-24-synchronization-p2 © 2006 DW Johnson and University of Washington 14

Synchronization in Java

• Java has locks (on any object)
» The Java platform associates a lock with every object that has
synchronized code

» A method or a code block {...} can be synchronized
» The lock is acquired before the block is entered and released

when the block is exited

• Java has condition variables (wait lists)
» The Object class defines wait(), notify(), notifyAll() methods
» By inheritance, all objects of all classes have those methods

