Memory Management

CSE 410, Spring 2006

Computer Systems
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Readings and References
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» Reading

» Chapter 9, Operating System Concepts, Silberschatz, Galvin, and
Gagne

* Other References
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Review: Program Memory Addresses

* Program addresses are fixed at the time the
source file is compiled and linked

* Small, simple systems can use program
addresses as the physical address in memory

* Modern systems usually much more complex
» program address space very large
» other programs running at the same time

» operating system is in memory too

Direct Physical Addressing
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Physical Addresses

Memory Mapping

» Address generated by the program is the same as the
address of the actual memory location

» Simple approach, but lots of problems
» Only one process can easily be in memory at a time

» There is no way to protect the memory that the process
isn't supposed to change (ie, the OS or other processes)
» A process can only use as much memory as is physically in
the computer
» A process occupies all the memory in its address space,
even if most of that space is never used
e 2 GB for the program and 2 GB for the system kernel
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Virtual Addresses

Make it so: Physical Memory Layout

* The program addresses are now considered to
be “virtual addresses”

* The memory management unit (MMU)
translates the program addresses to the real
physical addresses of locations in memory

* This is another of the many interface layers
that let us work with abstractions, instead of all
details at all levels
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» Contiguous Allocation
» Each process gets a single range of addresses

» Single-partition allocation
* one process resident at a time

» Multiple-partition allocation
* multiple processes resident at a time
» Noncontiguous allocation

» Paging, segmentation, or a combination
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Uniprogramming without Protection

» Application always runs at  oxoo000
the same place in physical
memory Edit

* Process can access all
memory even OS

» program bug crashes the unused
machine
(ON)
« MS-DOS
OxXFFFF
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Multiprogramming without Protection

* When a program is loaded

the linker-loader translates a 0x0000

program's memory accesses Word
(loads, stores, jumps) to
where it will actually be 0x7000
running in memory Solitaire
» Still no protection
« Once was very common SIUEEE
* Windows 3.1 0s

OxFFFF
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Multiprogramming with Protection

 Restrict what a program can do by restricting
what it can touch

 User process is restricted to its own memory
space
» can't crash OS
» can't crash other process

* How?

» "All problems can be solved with another level of indirection"
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Simple Translation: Base/Bounds

» Each process has a base 0S
register
b
» added to every memory =3§§0f(%0
reference
bounds reg
* Each process has a =0x500000
bounds register base reg
» no memory reference =0x600000
bounds reg

allowed beyond here —0x700000
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Base/Bounds Fragmentation
Virtual
0S || 0Ss || 0s || 0s || os|| 0s|| 0s|| 0s 0s
Address oS compaction
P1 P1 P1 P1 P1 P5 P5
Base Physical base
— reg P4
register Address =0x200000 o2 || b2 Pa || P4 || P4
P3
bounds reg P3 P3 P3 P3 P3 P6
Bounds os =0x500000
register \>) YES , ERROR! * Over time unused memory is spread out in small pieces
base reg » external fragmentation
=0x600000
. * Rearrange memory to make room for the next program
* Word references 0x004FF00 - valid g ry prog
litai " E‘())u%’oso{)?)g » compaction = lots of copying (expensive)
* Solitaire references 0x1100C0 - error ~ =0x » change base/bounds registers for moved programs
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Base/bounds Evaluation . Vitual Physical
Paglng Page # Page #
0x0000 0x0000
 Advantages of base/bounds 2 2
» process can't crash OS or other processes Divide a process's virtual 2 2
» can move programs around and change base register qddress space into fixed- 3 3
. i size chunks (called pages) 4 4
» can change program memory allocation by changing .. .
. Divide physical memo 5 5
bounds register . Py Yy 0x6000
into pages of the same size 6
* Problems with base/bounds Any virtual page can be 00000y Z
» external fragmentation located at any physical 1 5
' : page 2
» can't easily share memory between processes ) 10
L. . Translation box converts oxa0ool 3 11
» programs are limited to amount of physical memory from virtual pages to =
» doesn’t improve support for sparse address spaces physical pages Translation \—=— N
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Paging and Fragmentation

» No external fragmentation because all pages
are the same size

» don’t have to rearrange pages
» Sometimes there is internal fragmentation
because a process doesn’t use a whole page
» some space wasted at the end of a page

» better than external fragmentation

24-May-2006 cse410-26-memory © 2006 DW Johnson and University of Washington 17

Page Tables

virtual physical

address , address
Virtual Physical

Page # page #

Offset Offset

A page table maps virtual page numbers to
physical page numbers

 Lots of different types of page tables

» arrays, lists, hashes
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F lat Page Table Page Table Memory
0 5 0
* A flat page table 1[ e 1
uses the VPN to = :
index into an array  ______ 49 10 4
|
* What's the ! > L2 ! -Z
problem? (Hint: | VPN 7
how many entries | p 100 |- \ 8
are in the table?) PN orfser. o 1
11
12
L |13

PPN

Flat Page Table Evaluation

* Very simple to implement
* Don't work well for sparse address spaces
» code starts at 0x00400000, stack starts at 0OxX7FFFFFFF
« With 4K pages, this requires 1M entries per page
table
» must be kept in main memory (can't be put on disk)
 64-bit addresses are a nightmare (4 TB)

» Addressing page tables in kernel virtual memory
reduces the amount of physical memory used
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Multi-level Page Tables Multi-level Page Tables

» Use multiple levels of page tables L2Page Tables Memory
L1 Page Table
1

» each page table entry points to another page table

» the last page table contains the physical page
numbers (PPN)

* The VPN is divided into

» Index into level 1 page

w N P O
?
W J 0 U1 b W N KFE O

» Index into level 2 page

»
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Multi-Level Evaluation

Inverted Page Tables

* Only allocate as many page tables as we need--works Inverted Page Table ~ Memory

be easily moved to/from disk

:  Inverted page tables
with the sparse address spaces hash the VPN to get
* Only the top page table must be in pinned in physical the PPN ) THaable e
memory , « Requires O(1) lookup |
» Each page table usually fills exactly 1 page so it can i
|
|
|
|

« Storage is proportional |
to number of physical |
pages being used not o
the size of the address L2 [ 9Feet |-

space

* Requires multiple physical memory references for
each virtual memory reference
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