CSE 410 Assignment 6

Spring 2008

Due: Midnight, Friday 5/23/2008

Use electronic submission via the Catalyst tool: https://catalysttools.washington.edu/collectit/dropbox/telmas/2218

- 1. (Silberschatz 3.1) Describe the differences among short-term, medium-term, and long-term scheduling.
- 2. (Silberschatz 4.1, 4.3)
 - a. Provide two programming examples in which multithreading does *not* provide better performance than a single-threaded solution.
 - b. Under what circumstances does a multithreaded solution using multiple kernel threads provide better performance than a single-threaded solution on a single-processor system?
- 3. Consider the following threads with given starting times, running times and the priority values. Assume threads are executed on a single processor. Starting from time 0 and until al the threads terminate, draw a time diagram for each scheduling method given below. Show which thread is executed when and how long. (Hint: More than one diagram is possible for some scheduling methods, give only one for each.)
 - a. First come first served
 - b. Round robin (with 30 ms quantum)
 - c. Highest priority first (1:lowest, 5:highest)
 - d. Shortest job first

	T1	T2	T3	T4	T5	T6
Starting time(ms):	0	0	40	40	70	100
Running time(ms):	50	80	50	30	40	30
Priority:	1	2	5	1	3	4

Example timing diagram (different kinds of diagrams are acceptable as long as it is clear which thread is running when):

0. sec: T1 5. ms: T2 30. ms: T3	50. ms: T4
---------------------------------	------------

- 4. Starvation is the situation in which a process waits infinitely to be scheduled for execution. Which scheduling methods in question 3 allow starvation? Describe a scenario with starvation for each method of scheduling you give. (Assume that each scheduling is implemented in a naïve way without any optimization to detect starvation)
- 5. Multitasking is a method for executing multiple processes on a single or multiple CPU(s) as if they are executing at the same time on different CPUs. Multithreading is a method for executing multiple threads of a single process on a single or multiple CPU(s). Compare both approaches (similarities and/or differences) for the following aspects:
 - a. Actions taken at each context switch
 - b. Components of program state (register, heap, stack etc.) shared between processes/threads and differ for each process/thread
 - c. Memory overhead of managing processes/threads
 - d. Being implement-able in the kernel/user level
 - e. Operations performed on threads/processes (creating, terminating, scheduling etc.) transparent to/hidden from the programmer
- 6. **[Extra credit]** Consider the following application types. For each application, describe an example of how multithreading can be exploited to improve performance in some feature. (Hints: 1. Give a scenario in which at least two threads are running and performing different jobs in parallel. 2. You can assume a reasonable feature of the application to set up your answer.)
 - a. A text editor
 - b. A compiler
 - c. A chat application
 - d. An mp3 player application
 - e. An FTP server