
CSE 410 Assignment 7

Spring 2008

Due: Midnight, June 2, Monday

Synchronization is an important topic and is somewhat tricky. Since these questions
involve no actual program construction, be sure to take your time and clearly explain
your answers.

1. One semaphore implementation we covered in class was a spinlock – what is it?
What are other techniques to accomplish waiting without “spinning”? Should
spinlocks be completely avoided? Give a brief explanation for your answers.

2. Consider the following Acquire/Release implementation by busy-waiting. Explain
why such implementations with busy waiting are usually not appropriate for
single-processor systems, yet is often used in multiprocessor systems.

Acquire() { Release() {
 while(TestAndSet(value)) { value = 0;
 // noop }
 }
}

3. Consider the following Acquire/Release implementation using primitives
provided by the kernel for disabling/enabling interrupts. Implementing
synchronization primitives by disabling interrupts is not always appropriate in a
single-processor system. In such a system, what could happen if the following
synchronization primitives are available in user-level programs and interrupts are
disabled?

Acquire() { Release() {
 kernel_disable_interrupts(); kernel_enable_interrupts();
} }

4. Explain indefinite postponement in your own words.

5. (Silberschatz 6.11)

6. (Silberschatz 6.22)

See the next page �

7. [Dining Philosophers, Dijkstra] Consider five philosophers who spend their lives
thinking and eating. The philosophers share a circular table surrounded by five
chairs, each belonging to one of the philosophers. In the center of the table is a
bowl of rice, and the table is laid out with five single chopsticks, one between
each of the philosopher's chairs. When a philosopher thinks, she does not interact
with her colleagues. When a philosopher is hungry, she may eat if she can pick up
the two chopsticks immediately to her left and to her right. However, a
philosopher may only pick up one chopstick at a time and obviously cannot pick
up a chopstick that is already being held by a neighbor. When a hungry
philosopher has both chopsticks at the same time, she eats without releasing her
chopsticks. When she is finished eating, she puts down both of her chopsticks and
starts thinking again.
(a) Describe how a deadlock could occur in this situation, leading to starvation of
one or more philosophers because she (they) cannot acquire both of their
chopsticks in order to eat.
(b) Discuss how the four necessary conditions for deadlock indeed hold in this
setting. Discuss how deadlocks could be avoided by eliminating any one of the
four conditions.

8. [Extra credit] Construct a multithreaded example (diagram or timeline) to
demonstrate that if wait() and signal() operations are not executed atomically,
then mutual exclusion may be violated.

See the next page �

9. [Extra credit] Suppose that you are provided with a SPIM pseudoinstruction
“cas” that takes three arguments, one memory address through a register, and two
other registers. Simply, it is used to atomically set the value of a word in memory
to a new value if its current value is equivalent to a given one and returns the
result of the operation (1 on success and 0 on failure) in $v0. For example, cas
0($t1), $t2, $t3 does the following: If the word in the address 0($t1) is equal to
what is in $t2, it writes what is in $t3 to 0($t1) and sets $v0 to 1; otherwise it sets
$v0 to 0 and has no side effects on the memory (it changes nothing in the
memory). (Note: Codes related to this question are not expected to run in SPIM,
just reason about their execution on paper.)

a) Using the “cas” pseudoinstruction, implement two functions Acquire and
Release in the MIPS assembly language.

b) Suppose that the following MIPS codes labeled with T1 and T2 are
executed by two distinct threads T1 and T2. Suppose a single processor and it
is possible that a thread is preempted after execution of any instruction. When
a thread is preempted, all the registers are saved and they are restored when it
is restarted later. What are the possible values in the memory word labeled “x”
at the end, after both T1 and T2 terminate? Give the execution scenarios to
justify your answer.

. data
x .word 0

.text
T0: T1:
la $t0, x la $t0, x
lw $t1, 0($t0) lw $t1, 0($t0)
addi $t1, $t1, 1 addi $t1, $t1, 1
sw $t1, 0($t0) sw $t1, 0($t0)
assume thread ends here # assume thread ends here

c) Insert calls to Acquire and Release you implemented in part a) at
appropriate locations in the above code so that when both T1 and T2 terminate
the memory word labeled “x” can contain only “2” at the end.

