CSE 410 Assignment 7

Spring 2008

Due: Midnight, June 2, Monday

Synchronization is an important topic and is somegwiicky. Since these questions
involve no actual program construction, be sureke your time and clearly explain
your answers.

1.

One semaphore implementation we covered in classanspinlock — what is it?
What are other techniques to accomplish waitindheut “spinning”? Should
spinlocks be completely avoided? Give a brief exglen for your answers.

Consider the following Acquire/Release implemewtatdy busy-waiting. Explain
why such implementations with busy waiting are Ugunaot appropriate for
single-processor systems, yet is often used inipnattessor systems.

Acquire() { Release() {
while(TestAndSet(value)) { value = 0;
// noop }
}
}

Consider the following Acquire/Release implememwtati using primitives
provided by the kernel for disabling/enabling inbgts. Implementing
synchronization primitives by disabling interrugésnot always appropriate in a
single-processor system. In such a system, whdt deappen if the following
synchronization primitives are available in usefeleprograms and interrupts are
disabled?

Acquire() { Release() {
kernel_disable_interrupts(); kernel_enable_interrupts();

} }

Explain indefinite postponement in your own words.
(Silberschatz 6.11)

(Silberschatz 6.22)

See the next page

7. [Dining Philosophers, Dijkstra] Consider five plslaphers who spend their lives
thinking and eating. The philosophers share a lardable surrounded by five
chairs, each belonging to one of the philosopHherthe center of the table is a
bowl of rice, and the table is laid out with fiiegle chopsticks, one between
each of the philosopher's chairs. When a philosottiireks, she does not interact
with her colleagues. When a philosopher is hungjng, may eat if she can pick up
the two chopsticks immediately to her left and ¢o hight. However, a
philosopher may only pick up one chopstick at aetend obviously cannot pick
up a chopstick that is already being held by ali@g When a hungry
philosopher has both chopsticks at the same tiheegats without releasing her
chopsticks. When she is finished eating, she pogdoth of her chopsticks and
starts thinking again.

(a) Describe how a deadlock could occur in thigation, leading to starvation of
one or more philosophers because she (they) cacqgatre both of their
chopsticks in order to eat.

(b) Discuss how the four necessary conditions &adtibck indeed hold in this
setting. Discuss how deadlocks could be avoideelinyinating any one of the
four conditions.

8. [Extracredit] Construct a multithreaded example (diagram orltmagto
demonstrate that vfai t () andsi gnal () operations are not executed atomically,
then mutual exclusion may be violated.

See the next page

9. [Extracredit] Suppose that you are provided with a SPIM pseuttoictson
“cas” that takes three arguments, one memory asldnesugh a register, and two
other registers. Simply, it is used to atomicaély the value of a word in memory
to a new value if its current value is equivalenatgiven one and returns the
result of the operation (1 on success and 0 oar&iin $v0. For example, cas
0($t1), $t2, $t3 does the following: If the wordthre address 0($t1) is equal to
what is in $t2, it writes what is in $t3 to 0($dnd sets $v0 to 1; otherwise it sets
$v0 to 0 and has no side effects on the memoghéhges nothing in the
memory). (Note: Codes related to this questiomateexpected to run in SPIM,
just reason about their execution on paper.)

a) Using the “cas” pseudoinstruction, implement fwactions Acquire and
Release in the MIPS assembly language.

b) Suppose that the following MIPS codes labelett Wil and T2 are
executed by two distinct threads T1 and T2. Suppasiagle processor and it
is possible that a thread is preempted after ei@tof any instruction. When
a thread is preempted, all the registers are sanédhey are restored when it
is restarted later. What are the possible valuésarmemory word labeled “x”
at the end, after both T1 and T2 terminate? Gieeettecution scenarios to
justify your answer.

. data

X .word O

text

TO: T1:

la $t0, x la $t0, x

Iw $t1, O($t0) lw $t1, O($t0)

addi $t1, $t1,1 addi $t1, $t1, 1

sw $tl1, 0($t0) sw $t1, 0($t0)

assumethread ends here # assumethread endshere

c) Insert calls to Acquire and Release you impleedm part a) at
appropriate locations in the above code so thahvidogh T1 and T2 terminate
the memory word labeled “x” can contain only “2"tae end.

