
CSE 413 Spring 2000 Midterm Exam

Page 1 of 7

Sample Solution

Name ________________________________ ID # ____________ Score __________

_____ _____ _____ _____ _____ _____ _____ _____ _____ _____
 1 2 3 4 5 6 7 8 9 10

There are 10 questions worth a total of 42 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

You may refer to the textbook (Budd’s Understanding Object-Oriented Programming
using Java) and the Scheme report only. No other books or notes are allowed.

Question 1. (5 points) Write a recursive Scheme function powers-of-two. Given a
list of integers as input, powers-of-two should return a list whose elements have the
value 2n for each corresponding positive number n in the original list. Any elements of
the original list that are not positive or are not integers should be ignored. Examples:

(powers-of-two ’(1 2 3 a 0 10)) => (2 4 8 1024)
(powers-of-two ’(-2)) => ()
(powers-of-two ’(-3 5 oops 6 2.4)) => (32 64)

Feel free to use appropriate Scheme library functions in your solution.

(define (powers-of-two alist)
 (cond
 ((null? alist) ())
 ((and (integer? (car alist)) (positive? (car alist)))
 (cons (expt 2 (car alist)) (powers-of-two (cdr alist))))
 (else (powers-of-two (cdr alist)))))

CSE 413 Spring 2000 Midterm Exam

Page 2 of 7

Question 2. (8 points) Suppose we enter the following top-level definitions into a
Scheme interpreter.

(define a 100)
(define b ’(200 49))
(define c 17)
(define (pizza a) (odd? a))
(define (pie a) (pizza (- 3 a)))
(define apple (lambda (a) (> a c)))

What is the value of each of the following expressions, given that the above definitions
are in effect? If evaluating the expression produces an error, explain what is wrong.

a) (cons a b) => (100 200 49)

b) (cons b b) => ((200 49) 200 49)

c) (append a b) error. Both arguments to append must be
lists; a is bound to the integer 17.

d) (apple 13) => #f

e) (pizza 12) => #f

f) (map pizza b) => (#f #t)

g) (map pie ’(7 8 9)) => (#f #t #f)

h) (let ((c 12)
 (b (+ c a)))
 (+ b c)) => 129

CSE 413 Spring 2000 Midterm Exam

Page 3 of 7

Question 3. (4 points) Suppose we have defined the following Scheme functions.

;; = “is num a prime number?”
(define (is-prime? num)
 (prime-helper num (- num 1)))

(define (prime-helper num divisor)
 (cond ((< divisor 1) #f)
 ((= 1 divisor) #t)
 ((= 0 (remainder num divisor)) #f)
 (else (prime-helper num (- divisor 1)))))

The following questions refer to the auxiliary function prime-helper only.
.

a) Is prime-helper tail recursive or NOT tail recursive? In 1 or 2 sentences
explain why or why not.

Yes. The only recursive call is in the else clause, and the result of that recursive
call is the direct result of prime-helper; no further processing needs to be done.

b) What is the time complexity of prime-helper? (O(n log n), O(1), O(n2), etc.).

Given a divisor d, prime-helper executes O(d) steps.

c) What is the space complexity of prime-helper?

O(1). (Scheme requires that tail recursion be implemented without requiring a
separate stack frame for each tail-recursive call .)

Question 4. (3 points) Write a function (are-primes? alist) that returns a list
indicating which of the corresponding numbers in the original list are prime. Your
answer should use is-prime? from the previous question as needed, and may not
contain any loops or recursive function calls. (Hint: higher-order functions) You may
assume that all elements in the original list are positive integers. Example:

(are-primes? '(3 42 17 12)) => (#t #f #t #f)

(define (are-primes? lst)
 (map is-prime? lst))

CSE 413 Spring 2000 Midterm Exam

Page 4 of 7

Question 5. (4 points) Generational garbage collectors classify objects as "new", "not so
new", and "really old".

a) How is this information used by the garbage collector? (i.e., what is the strategy
for collecting different kinds of objects, how does the collector decide which
objects are new/not so new/old, etc.) Describe briefly.

Objects are initially allocated in new space. If they survive some number of
garbage collections, they are promoted to “not so new”, and if they survive
additional collections while there, they are eventually promoted to old space.

The GC collects the new space frequently, “not so new” less frequently, and old
space rarely (exactly how often depends on the particular algorithms used).

b) What is the rationale for doing this? Why is this a useful/good idea?

The key observation is that most dynamically allocated objects live for a short
time and become garbage quickly. Objects that do not become garbage quickly
tend to have long lifetimes. That means that collections of new space are likely to
reclaim a high percentage of that pool of storage, while collections of older spaces
have much lower yields for the amount of work done. So frequent collections of
new space are more cost effective (yield the most free storage for the effort
involved).

CSE 413 Spring 2000 Midterm Exam

Page 5 of 7

Question 6. (6 points) This question concerns static (lexical) vs dynamic scope rules.

Suppose we have the following definitions:

(define a 100)

(define b 17)

(define (squid)
 (let ((b 5))
 (clam b)))

(define (clam a)
 (+ a b))

a) (2 points)What is the result of evaluating (squid) using the normal lexical
scoping rules of Scheme?

22

b) b. (2 points) What is the result of evaluating (squid) using dynamic scoping?

10

c) (2 points) Modern programming languages generally use lexical scoping instead

of dynamic scoping. Why? (Give a software engineering or other technical
reason.)

If a language provides static scoping, it is possible to analyze functions and
understand them without having to take into account how they are used. With
dynamic scope, what happens when a function is executed depends on who calls
it, and what local names the caller(s) define. Besides being harder to analyze, it
also makes the code more fragile – changes in the calling program (renaming of
local variables) can change the behavior of functions that it calls.

CSE 413 Spring 2000 Midterm Exam

Page 6 of 7

Question 7. (5 points) Circle true or false.

In the Java programming language…

a) True | False Private fields and methods declared in a class can be accessed
by member functions of that class and from member functions of classes that
extend the original class.

FALSE. Private fields and methods can only be accessed directly inside the class,
not in other classes (even those that extend the original class).

b) True | False Methods and data can both be declared final.

TRUE

c) True | False The number of bits used to store a variable of type int depends

on the kind of machine or particular Java implementation that you’re using.

FALSE

d) True | False The default assignment operator(=) does a shallow copy.

TRUE

e) True | False A class that implements an interface must either implement all

methods in the interface, or inherit those that it does not implement from a parent
class or interface.

FALSE. Code cannot be inherited from interfaces; they are purely specifications
with no implementations.

Question 8. (2 points) What's wrong with this Java class definition, if anything? (If
something is wrong, it will be more significant than a missing semicolon or other trivial
punctuation error.)

class Whazzup {
 private int v;
 public static int getv() {return v;}
 public static void setv(int val) { v = val; }
}

Static functions cannot reference non-static instance variables because they are not
associated with an instance (they are associated with the class). So the references to
variable v in the static functions are illegal.

CSE 413 Spring 2000 Midterm Exam

Page 7 of 7

Question 9. (3 points)

a) If a Java method is declared "synchronized", what does that mean?

A synchronized method obtains a lock on the associated object while it executes,
and any other thread that calls a synchronized method for the same object will
block until the first one releases the lock.

b) Why would anyone ever do this?

The primary use is to keep two threads from interfering with each other, by
keeping a second thread from accessing data that has been partially updated by
the first one.

Question 10. (2 points) Java. A window in Java can be defined like this.

 class NewFrame extends Frame {
 ...
 public void paint(Graphics g) {
 g.drawline(100,100,200,200);
 }
 ...
 }

When is paint() called to draw the window and who calls it?

paint() (or update(), which calls paint()) is called by the underlying window
manger whenever some or all of the window needs to be redrawn.

