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All of the functions that you write for this homework should be defined in the same source file,
hw2.scm.  Each question is worth 2 points, for a total of 20.

1.  In the “Lambda” lecture I gave a version of the sum procedure that takes two procedures
term and next and a range defined by a and b, and returns a summation of the terms over the
range.  As given, the procedure generates a process that is linear recursive.  Rewrite the
procedure to generate an iterative process.  You can use the following skeleton.

(define (sum term a next b)
(define (iter a result)
(if 〈??〉)

〈??〉
(iter 〈??〉 〈??〉)))

(iter 〈??〉 〈??〉))

2.  Simpson’s rule is one way of numerically integrating a function over a range.  Recall the
drawing in the “More Lambda” lecture of a function over a range with some intervals.

The integral of any function f(x) = y between a and b is approximated by
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Write a procedure simp1 that takes as arguments f, a, b, and n, and uses your sum procedure
to calculate and return a value for the approximate integral.  You can assume that n is even.
Note that you need to be able to recognize which interval you are working on in order to multiply
by the correct coefficient.  Also, due to roundoff errors, a+n⋅h may not exactly equal b.  It may
be easier to sum over the integers k in the interval 0 to n.
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3.  The summation given in problem 2 is the result of adding up second order approximations for
the area under the curve on successive intervals [x0,x2], [x2,x4], …, [xn-2,xn] and expressing the
resulting sum as one formula.  The approximation for an individual interval is given by
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, where khaxk +=  and h, y, and n are the same as above.

If you add these terms up for i = 0 to n-2, you will see that you have
generated the formula in problem 2.  Again you can assume that n
is even.

Write a second procedure simp2 that takes the same arguments f,
a, b, and n, and uses the sum procedure to calculate and return a
value for the approximate integral.  The difference here is that your
term procedure calculates [ ]214 ++ ++ iii yyy  each time it is called, rather than a single yi value
as in problem 2.  Your next function must operate accordingly.

4.  The procedure sum is only one of many similar abstractions.    Write a procedure named
product that takes as arguments two procedures term and next and a range defined by a
and b, and returns the product of the terms over the range.  Note the slightly odd order of the
arguments: (product term a next b)

5.  Write a procedure named factorial that uses product to calculate the factorial of a
positive integer.

6.  Notice that sum and product are both special cases of a more general notion that we could call
accumulate that combines a collection of terms using some more general accumulation
procedure.

Accumulate takes as arguments the same term and range specifications as sum and product, plus
a combiner function and a base value.  The combiner function takes two arguments and
combines the current term with the accumulation of the preceding terms.  The base value specify
the value to use when the terms run out.  Again, note the order of the arguments.

(accumulate comb null-value term a next b)

a.  Write the accumulate procedure.

b.  Write a procedure named acc-product that takes as arguments two procedures term and
next and a range defined by a and b, and returns the product of the terms over the range.
acc-product should use accumulate to do the actual accumulation task.  The arguments
should be in the same order as in problem 4 above.
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Use acc-product to implement procedure wallis-pi that takes one argument n and
returns an approximate value for pi.

8a.  Write a procedure double that takes a procedure of one argument as its argument and returns
a procedure that applies the original procedure twice.  For example, if inc is a procedure that that
adds 1 to its argument, then (double inc) should evaluate to a procedure that adds 2.

8b.  Let f and g be two one-argument functions.  The composition f after g is written f�g or
(f(g(x)).  Write a procedure compose that implements composition.  For example, if inc is a
procedure that adds 1 to its argument and square takes the square of its argument, then
((compose square inc) 6) returns 49.

9.  Provide cons statements

 (define a (cons foo bar))
 (define a (cons baz faz))

that will produce the structures shown here.  Refer to the Pairs lecture for examples of similar
cons statements.

10.  Show that we can represent pairs of non-negative integers using only numbers and
arithmetic operations if we represent the pair a and b as the integer that is the product 2a3b.
Define three procedures i-cons, i-car, and i-cdr that implement pairs this way. In other words,
i-cons takes the arguments a and b, and returns an integer; i-car takes an integer and returns a;
and i-cdr takes an integer and returns b.

a
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